Johnathan wins Student Educational Award

Ph.D. student Johnathan Woodruff won the Student Educational Award from the American Shore & Beach Preservation Association. This award is given annually to an undergraduate or graduate student who, through his or her research, is furthering the state of science of coastal systems as it relates to the goals and mission of the ASBPA. The award includes a $500 cash stipend. Johnathan wil attend the ASBPA National Coastal Conference next week to present his findings to the coastal community.

CCHT Ph.D. student Johnathan Woodruff.

Multihazard Hurricane Fragility Model for Wood Structure Homes Considering Hazard Parameters and Building Attribute Interaction

Predicting building damage as a function of hurricane hazards, building attributes, and the interaction between hazard and building attributes is a key to understanding how significant interaction reflects variation hazard intensity effect on damage based on building attribute levels. This paper develops multihazard hurricane fragility models for wood structure homes considering interaction between hazard and building attributes. Fragility models are developed for ordered categorical damage states (DS) and binary collapse / no collapse. Exterior physical damage and building attributes from rapid assessment in coastal Mississippi following Hurricane Katrina (2005), high-resolution numerical hindcast hazard intensities from the Simulating WAves Nearshore and ADvanced CIRCulation (SWAN+ADCIRC) models, and base flood elevation values are used as model input. Leave-one-out cross-validation (LOOCV) is used to evaluate model prediction accuracy. Eleven and forty-nine combinations of global damage response variables and main explanatory variables, respectively, were investigated and evaluated. Of these models, one DS and one collapse model met the rejection criteria. These models were refitted considering interaction terms. Maximum 3-s gust wind speed and maximum significant wave height were found to be factors that significantly affect damage. The interaction between maximum significant wave height and number of stories was the significant interaction term for the DS and collapse models. For every 0.3 m (0.98 ft) increase in maximum significant wave height, the estimated odds of being in a higher rather than in a lower damage state for DS model were found to be 1.95 times greater for one- rather than for two-story buildings. For every 0.3 m (0.98 ft) increase in maximum significant wave height, the estimated odds of collapse were found to be 2.23 times greater for one- rather than for two-story buildings. Model prediction accuracy was 84% and 91% for DS and collapse models, respectively. This paper does not consider the full hazard intensity experienced in Hurricane Katrina; rather, it focuses on single-family homes in a defined study area subjected to wind, wave, and storm surge hazards. Thus, the findings of this paper are not applicable for events with hazards that exceed those experienced in the study area, from which the models were derived.

CC Massarra, CJ Friedland, BD Marx, JC Dietrich (2020). “Multihazard Hurricane Fragility Model for Wood Structure Homes Considering Hazard Parameters and Building Attributes Interaction.” Frontiers in Built Environment, 6, 147, DOI: 10.3389/fbuil.2020.00147.

Coastal Engineering Lab in Fitts-Woolard Hall

Construction is nearly-completed on Fitts-Woolard Hall, which will be our new home. We are moving slowly during this Fall 2020, and we will be in the new building when we return full-time to campus. The photo below is an updated look at our Coastal Engineering Lab. This room will have workspaces for the coastal engineering team at NC State, and its location on the third floor will allow a great view of Centennial Campus. We are excited for the new building!

New glass wall and furniture for the lab.

Continue reading

Differences between SWAN v41.31 and v41.10

Updated 2020/06/23: Adjusted for new SWAN setting with NSWEEP=1.

In late May 2019, the SWAN developers released a new version. Whenever this happens, the new version needs to be implemented into the coupled SWAN+ADCIRC, thus replacing an older version in the coupled model.

Starting with the upcoming release version 55 of ADCIRC, the coupled SWAN has been upgraded to its latest release version 41.31. It replaces the older version 41.10.

This upgrade is mostly a benefit to users of SWAN+ADCIRC. It has been almost 4 years since the last upgrade, and we had skipped a new SWAN version (41.20) during that time. Thus, this upgrade is adding features and bug fixes from two newer versions (41.20 and 41.31). SWAN has added several capabilities that will be advantageous to users of SWAN+ADCIRC.

However, a few of its changes will cause differences in the wave predictions, as described below. Users will likely need to re-calibrate their input settings for SWAN.

Continue reading

Storm-Driven Erosion and Inundation of Barrier Islands from Dune- to Region-Scales

Barrier islands are susceptible to erosion, overwash, and breaching during intense storms. However, these processes are not represented typically in large-domain models for storm surge and coastal inundation. In this study, we explore the requirements for bridging the gap between dune-scale morphodynamic and region-scale flooding models. A high-resolution XBeach model is developed to represent the morphodynamics during Hurricane Isabel (2003) in the North Carolina (NC) Outer Banks. The model domain is extended to more than 30 km of Hatteras Island and is thus larger than in previous studies. The predicted dune erosion is in good agreement with post-storm observed topography, and an ‘‘excellent’’ Skill Score of 0.59 is obtained on this large domain. Sensitivity studies show the morphodynamic model accuracy is decreased as the mesh spacing is coarsened in the cross-shore direction, but the results are less sensitive to the alongshore resolution. A new metric to assess model skill, Water Overpassing Area (WOA), is introduced to account for the available flow pathway over the dune crest. Together, these findings allow for upscaled parameterizations of erosion in larger-domain models. The updated topography, obtained from XBeach prediction, is applied in a region-scale flooding model, thus allowing for enhanced flooding predictions in communities along the Outer Banks. It is found that, even using a fixed topography in region-scale model, the flooding predictions are improved significantly when post-storm topography from XBeach is implemented. These findings can be generalized to similar barrier island systems, which are common along the U.S. Gulf and Atlantic coasts.

A Gharagozlou, JC Dietrich, A Karanci, RA Luettich, MF Overton (2020). “Storm-driven erosion and inundation of barrier islands from dune- to region-scales.” Coastal Engineering, 158, 103674, DOI: 10.1016/j.coastaleng.2020.103674

Binary Building Attribute Imputation, Evaluation, and Comparison Approaches for Hurricane Damage Data Sets

Missing building attributes are problematic for development of data-based fragility models. Relative to other disciplines, the application of imputation techniques is limited in the field of engineering. Current imputation techniques to replace missing building attributes lack evaluations of imputation model performance, which ensure accuracy and validity of the imputed data. This paper presents two imputation approaches, along with imputation diagnostic and comparison approaches, for binary building attribute data with missing observations. Predictive mean matching (PMM) and multiple imputation (MI) are used to impute foundation type and number of stories attributes. The diagnostic approach, based on the logistic regression goodness-of-fit test, is used to evaluate the imputation model fit. The comparison approach, based on the percentage of correctly imputed observations, is used to evaluate the imputation model performance. A data set of single-family homes damaged by the 2005 Hurricane Katrina is used to demonstrate implementation of the methodology. Based on the comparison approach, PMM models showed 9% and 2% greater accuracy than MI models in imputing foundation type and number of stories, respectively.

CC Massarra, CL Friedland, BD Marx, JC Dietrich (2020). “Binary Building Attribute Imputation, Evaluation, and Comparison Approaches for Hurricane Damage Data Sets.” Journal of Performance of Constructed Facilities, 34(3), 04020036, DOI: 10.1061/(ASCE)CF.1943-5509.0001433.