Multi-Hazard Hurricane Vulnerability Model to Enable Resilience-Informed Decision

Hurricanes or typhoons are multi-hazard events that usually result in strong winds, storm surge, waves, and debris flow. A community-level multi-hazard hurricane risk analysis approach is proposed herein to account for the combined impacts of hazards driven by hurricanes including surge, wave, and wind. A tightly coupled ADCIRC and SWAN model is used to account for the surge and wave hazard. Community-level exposure analysis is conducted using a portfolio of building archetypes associated with each hazard. A building-level hurricane vulnerability model is developed using fragility functions to account for content, building envelope, and structural damage. These fragility functions calculate the exceedance probability of predefined damage states associated with each hazard. Then, a building damage state is calculated based on the maximum probability of being in each damage state corresponding to each hazard. The proposed hurricane risk model is then applied to Waveland, Mississippi, a community that was severely impacted by Hurricane Katrina in 2005. The main contribution of this research is modeling the community-level hurricane vulnerability in terms of damage to the building envelope and interior contents driven by surge, wave, and wind using fragility functions to provide a comprehensive model for resilience-informed decision-making.

OM Nofal, JW van de Lindt, G Yan, S Hamideh, JC Dietrich (2021). “Multi-Hazard Hurricane Vulnerability Model to Enable Resilience-Informed Decision.” Proceedings of International Structural Engineering and Construction, S El-Baradei, A Abodonya, A Singh, S Yazdani (eds.), 8(1), DOI: 10.14455/ISEC.2021.8(1).RAD-01.