News: Jessica Gorski Featured in Lenovo Video

2021/11/15 – Intel + Lenovo
Coastal Computing

Our research into real-time erosion predictions using XBeach was featured in a recent video by Lenovo and CNN. Jessica Gorski describes how we are exploring the use of 1D transect models to predict erosion during storms.

Lenovo provides hardware and support for the HPC services at NC State. The video was produced as branded content for CNN, and it was featured on the CNN web site and social media.

The video required two days of shooting with a team of directors, photographers, audio specialists, and production assistants. Click below to see photos of the production.

Continue reading

News: Coastal Resilience and Sustainability Initiative

2021/09/15 – NCSU Executive Vice Chancellor and Provost
Catalyzing Coastal Change

ncsu-engr

Casey Dietrich, associate professor in the Department of Civil, Construction and Environmental Engineering, is also a member of CRSI’s leadership team. His expertise in the prediction of coastal hazards, will help the initiative further research on determining how coastal environments respond to storms. For example, a storm like the recent Hurricane Ida devastated New Orleans’ power grid, and there needs to be some sort of solution for how to solve power issues during and after storms.

“My research team develops computer models to represent how beaches and dunes will be eroded, and which areas will be flooded and for how long,” he said. “It is critical to understand how these hazards can vary, both across complex coasts like in North Carolina for now and in the future, as a step toward improving resiliency and sustainability for coastal regions.”

The interdisciplinary nature of the team’s work, however, cannot be overstated. Solutions to one coastal challenge, like a seawall to mitigate flooding, may create new challenges or unintended consequences to the environment, tourism, energy and water systems. The varied issues facing coastal areas necessitate connecting across disciplines to develop integrated solutions.

News: CCHT Leads a Core Research Project for NC Sea Grant

2020/01/17 – NC Sea Grant News
NC Sea Grant Announces 2020–2022 Core Research Projects

ncsg

North Carolina Sea Grant’s core research projects for 2020 to 2022 will apply innovative approaches to coastal issues. Research teams across the state are starting new studies on coastal resilience, climate change, flooding, shellfish and aquaculture, environmental literacy and more.

“Our core research examines real-world needs of our coastal communities and ecosystems,” says Susan White, executive director of North Carolina Sea Grant. “We are pleased to have so many multidisciplinary collaborations that address our program’s strategic focus areas.”

News: Connecting Erosion to Flooding

2019/09/26 – NC Sea Grant Coastwatch
XBeach Model Predicts Storm Impacts on Beaches and Dunes

Alireza Gharagozlou (below) is a doctoral student in the Department of Civil, Construction, and Environmental Engineering at NC State University. He studies how to connect predictions of beach and dune erosion to community-wide flooding and serves with Casey Dietrich on NC State’s Coastal & Computational Hydraulics Team. North Carolina Sea Grant has supported their work.

Alireza surveying the beach profile near Hatteras, NC, with RTK-GPS after Hurricane Florence.

2019/04/26 – NC Sea Grant Coastwatch Currents
Model Predicts Storm Impacts on Beaches and Dunes

ncsg

During storms, strong waves and currents can erode beaches and dunes and create low-lying areas vulnerable to flooding. We use field surveys and a computer model called XBeach to predict this erosion, as well as to understand its interactions with storm-driven flooding of larger regions.

Computer models allow us to see how the storm surge and waves impact the beach over time, and which locations are vulnerable to large-scale damage. Good predictions of such storm impacts help emergency managers take better-informed measures to protect coastal areas. Understanding vulnerabilities also instructs highway access design and residential area planning.

We used the XBeach computer model on more than 30 kilometers of Hatteras Island between Avon and Rodanthe to explore how to connect erosion predictions to larger areas. Could XBeach cover more of the island, yet still provide good erosion predictions at beach and dune scales? And how could we connect erosion predictions to other models for storm surge and flooding?

News: Dietrich Promoted to Associate Professor

2019/06/03 – NCSU Civil, Construction, and Environmental Engineering
Faculty Promotions

ncsu-engr

We are pleased to announce that we have had several faculty promoted during this year in recognition of their excellent contributions to research and teaching.

Dr. Casey Dietrich was promoted to Associate Professor with tenure. Dietrich, who leads the Coastal and Computational Hydraulics Team has developed computational models that predict storm surge and coastal flooding. He teaches courses in fluid mechanics and coastal engineering.

News: Modeling Florence’s Storm Surge

2019/04/26 – NCSU College of Engineering
After the Storm

ncsu-engr

Dr. Casey Dietrich, an assistant professor in the Department of Civil, Construction, and Environmental Engineering (CCEE), leads the Coastal and Computational Hydraulics Team and develops computational models that predict storm surge and coastal flooding. Using the model ADCIRC, the team makes predictions about how high sea waters will rise, which areas will be flooded and for how long. These predictions are made for the entire coastline, and then his team visualizes the flooding at the scales of individual buildings and coastal infrastructure. During Florence, Dietrich’s team and collaborators acted as liaisons for state emergency managers to aid their decision making.

“The models are just one data point among many, but they’re helpful in understanding hazards and used to make predictions in real time — partly to make decisions about evacuation, where to deploy resources after, safe places to put emergency vehicles and water supplies,” he said.

The state emergency managers are able to use the flooding predictions to get immediate estimates on damages, which helps communities that are figuring out how much recovery will cost.

After Hurricane Matthew in 2016, Dietrich and his colleagues improved the models’ ability to forecast encroaching water along shorelines. Post-Florence, Dietrich said the research focus is to speed up the model and allow for more permutations to see what might happen if a storm slows down or shifts direction.