Alireza Gharagozlou wins Student Educational Award

Ph.D. student Alireza Gharagozlou won the Student Educational Award at the ASBPA National Coastal Conference 2018. This award is given annually to an undergraduate or graduate student who, through his or her research, is furthering the state of the science of coastal systems as it relates to the goals and mission of the ASBPA. Congrats to Alireza!

Alireza accepts the Student Educational Award during the awards luncheon at the ASBPA National Coastal Conference.

News: Post-Florence Field Observations

2018/10/10 – NCSU Civil, Construction, and Environmental Engineering
CCEE Researchers respond rapidly to Hurricane Florence

ncsu-engr

Much of the North Carolina coast is lined with sandy beaches and dunes, which can erode during storms, allowing sand onto major roadways and floodwaters into communities. To develop predictions for this erosion and its effects on infrastructure, it was critical to collect observations shortly after the storm. A multi-disciplinary team led by Dr. Elizabeth Sciaudone traveled to Dare County to collect time-sensitive data at Kitty Hawk, Nags Head, Pea Island, and Hatteras Island. Working in conjunction with the Institute for Transportation Research and Education (ITRE), the Center for Geospatial Analytics in the College of Natural Resources, and industry partner SenseFly, researchers surveyed beach and dune changes. Real-Time Kinematic GPS equipment was used to survey select cross-shore beach and dune profiles and document the extent of dune erosion and overwash (inland sand deposits), such as when NC Highway 12 becomes covered after large storms.

News: Storm Surge Modeling during Hurricane Florence

2018/09/13 – The State of Things on WUNC
Hurricane Florence Coverage from Around the State

Hurricane Florence, which is now a Category 2 storm, continues to bear down on the Carolina coast. The National Weather Service says it is likely to be “the storm of a lifetime” for certain portions of that coastline. Officials have ordered the evacuation of over 1 million people from the coasts of North and South Carolina. … Stasio is joined by Casey Dietrich, a professor in North Carolina State University’s Department of Civil, Construction and Environmental Engineering and leader of its Coastal and Computational Hydraulics Team. Dietrich explains the models currently being refined to help predict and plan for hurricanes and their effects on coastlines.

For this episode of The State of Things, the full-length podcast is embedded below. The interview with Casey Dietrich starts at about the 37-minute mark. It was great to describe our projects with DHS, NSF, and NC Sea Grant as part of this episode about Hurricane Florence.

Carter Rucker

Updated 2018/08/27

M.S. Student (Graduate Research Assistant)
Department of Civil, Construction, and Environmental Engineering
North Carolina State University
Mann Hall, Room 424
2501 Stinson Drive
Raleigh NC 27607
carucker@ncsu.edu

I am a first-year graduate student in the CCHT at NC State University.  I am from Raleigh and grew up going to North Carolina beaches.  These beaches have driven my interest toward barrier island dynamics, coastal hazards, and forecasting effects of major storm systems.  I received my undergraduate degree in civil engineering from NC State where I focused my courses in water resources and coastal engineering.  During this time, I became involved with the coastal engineering team by attending weekly team meetings, joining the Coast, Oceans, Ports, and Rivers Institute (COPRI), and contributing to two research projects.

Continuing my education with a graduate degree, I will be working with Dr. Casey Dietrich to create a model which outputs predictions for high-energy storms.  I am excited to have joined the CCHT, and I look forward to gaining a better understanding of barrier islands, coastal hazards, and storms.

Aside from research, I am involved in Engineers Without Borders, with whom I have made two trips to Guatemala to build rainwater catchment systems to provide drinking water for a remote mountain community called Caserio Panhux.  I also played on the NCSU club lacrosse team, and in my free time, I like playing bass guitar and going to football games.  GO PACK!

Continue reading

Autumn Poisson

Updated 2018/08/16

Ph.D. Student (Graduate Research Assistant)
Department of Civil, Construction and Environmental Engineering
North Carolina State University
Mann Hall, Room 424
2501 Stinson Drive
Raleigh NC 27607
apoisso@ncsu.edu

I am a first year PhD student in the CCHT at North Carolina State University. I am originally from Michigan where we have a different kind of coastline, but a very large one none the less. Living near the Great Lakes, my love for the natural environment was always present. I studied environmental science and mathematics at the University of Michigan for my undergraduate degree and then ecology for my masters. After graduating, I worked with various organizations on things related to environmental education, communication and outreach, and fresh water studies, and in a more pivotal position working on a coastal watershed restoration project on a small island in the Pacific Ocean. It was here where I fell in love with that other coast, the salty one. Afterward, I worked in landscape limnology (freshwater) research at Michigan State University with some truly amazing people who helped me develop an interest in the research process. From there I decided I needed a new challenge and needed to develop my own research interests, so I decided to apply to go back to school for my PhD.

During the start of my PhD, I will be working on the the NSF project “Subgrid-Scale Corrections to Increase the Accuracy and Efficiency of Storm Surge Models,” which has the goal of incorporating the more nuanced structure of coastal landscapes available in higher resolution storm surge models into broader scaled models thus reducing computation times while also maintaining model accuracy. Since I am just starting, my research interests have not been fully formed and are still rather broad. However, I hope to use my numerical modeling and quantitative skills to assist coastal communities as they prepare for the unforeseen changes they will experience. This includes learning more about coastal processes and coastal modeling to understand how storm events and subsequent storm surge will impact and alter the coastal landscape.

In addition to my work at NC State, I am also passionate about my personal health and fitness so I spend most of my free time either at the gym or cooking in the kitchen. I also love to read and spend time in the outdoors. I hope to experience all that North Carolina has to offer from the mountains to the sea.

Continue reading

Ayse Karanci wins Abstract Competition at iEMSs Conference

Ayse Karanci was a winner in the abstract competition at the 9th International Congress on Environmental Modelling and Software. The award included funding to support her travel to the conference in Fort Collins, Colorado, where she presented on “Cyberinfrastructure for Enhancing Interdisciplinary Engagement in Coastal Risk Management Research.”

Although Ayse was never an official member of the CCHT, she did contribute to our Risk Analytics Discovery Environment (RADE) project. Her presentation was related to that project, in which she developed containers for her models for coastal erosion and decision-making in coastal households. We are very proud of her good work.

News: Faster Storm Surge Forecasting

2018/06/12 – DHS Coastal Resilience Center of Excellence
NC State project aims to create faster storm surge forecasting

ncsg

Planning for a hurricane is a complicated process involving many stakeholders and varying degrees of uncertainty. Accurate predictions of storm surge and wave heights are vital to decision-making before, during and after the storm. Creating these predictions through modeling software can be expensive and time-consuming. When dealing with hurricanes, time is critical for emergency managers and other officials.

Helping decision-makers to save valuable prediction time is CRC Principal Investigator Dr. Casey Dietrich of North Carolina State University (NCSU). His project, “Improving the Efficiency of Wave and Surge Models via Adaptive Mesh Resolution,” involves collaboration with co-PI Dr. Clint Dawson at the University of Texas at Austin. Their project focuses on speeding up a widely used prediction tool, ADCIRC. His work with North Carolina Emergency Management during Hurricane Matthew in 2016, and his contributions to developing future disaster resilience specialists, have helped make significant contributions to disaster preparation and recovery.