Welcome to the CCHT! We develop computational models for wind waves and coastal circulation, and then apply these models to high-resolution simulations of ocean behavior. Our goals are to understand how coastlines are threatened during storms, how materials are transported in the coastal environment, and how to communicate these hazard risks for use in decision support. Our research spans the disciplines of coastal engineering, numerical methods, computational mathematics, and high-performance computing.

In this web site, we share our research progress, from development to application, and from coding to publishing. Learn more about What We Do and how to Join Our Team.

Binary Building Attribute Imputation, Evaluation, and Comparison Approaches for Hurricane Damage Data Sets

Missing building attributes are problematic for development of data-based fragility models. Relative to other disciplines, the application of imputation techniques is limited in the field of engineering. Current imputation techniques to replace missing building attributes lack evaluations of imputation model performance, which ensure accuracy and validity of the imputed data. This paper presents two imputation approaches, along with imputation diagnostic and comparison approaches, for binary building attribute data with missing observations. Predictive mean matching (PMM) and multiple imputation (MI) are used to impute foundation type and number of stories attributes. The diagnostic approach, based on the logistic regression goodness-of-fit test, is used to evaluate the imputation model fit. The comparison approach, based on the percentage of correctly imputed observations, is used to evaluate the imputation model performance. A data set of single-family homes damaged by the 2005 Hurricane Katrina is used to demonstrate implementation of the methodology. Based on the comparison approach, PMM models showed 9% and 2% greater accuracy than MI models in imputing foundation type and number of stories, respectively.

CC Massarra, CL Friedland, BD Marx, JC Dietrich (2020). “Binary Building Attribute Imputation, Evaluation, and Comparison Approaches for Hurricane Damage Data Sets.” Journal of Performance of Constructed Facilities, 34(3), 04020036, DOI: 10.1061/(ASCE)CF.1943-5509.0001433.

Posters: EWC Symposium 2020

A Poisson, JC Dietrich “Improving ‘sub-grid’ representation in the SLOSH model. Environmental, Water Resources, and Coastal Engineering Research Symposium , North Carolina State University, 6 March 2020.

Improving ‘sub-grid’ representation in the SLOSH model.

CA Rucker, N Tull, JC Dietrich, R Luettich, R Cyriac. “Improving the accuracy of a real-time ADCIRC storm surge downscaling model. Environmental, Water Resources, and Coastal Engineering Research Symposium , North Carolina State University, 6 March 2020.

Improving the accuracy of a real-time ADCIRC storm surge downscaling model.

JL Woodruff, JC Dietrich, AB Kennedy, D Wirasaet, D Bolster, Z Silver, RL Kolar. “Improving predictions of coastal flooding via sub-mesh corrections.Environmental, Water Resources, and Coastal Engineering Research Symposium, North Carolina State University, 6 March 2020.

Improving predictions of coastal flooding via sub-mesh corrections.

Continue reading

Wind and Tide Effects on the Choctawhatchee Bay Plume and Implications for Surface Transport at Destin Inlet

Multiple river-dominated estuaries line the northern Gulf coast and introduce substantial density variations. Their plumes have been shown to be highly sensitive to wind and tide effects, but in studies with limited observations and idealized wind forcing. This study explores these effects with a dynamic model that can represent the full behavior from river through estuary to shelf, and for a period with extensive observations. The inner shelf adjacent to Choctawhatchee Bay, a micro tidal estuary situated along the Florida Panhandle, is subject to buoyant, brackish outflows during the ebb-phase of the tidal cycle.

In December 2013, experiments were performed in this region to study mechanisms that influence near-shore surface transport. Satellite imagery showed a visible brackish surface plume at Destin during low tide. The goal of the present study is to quantify variability in the plume signature due to changes in tidal and wind forcing. Density-driven flows near Destin Inlet are modeled with the recently-enhanced, three-dimensional, baroclinic capabilities of the ADvanced CIRCulation (ADCIRC) model. Modeled tides, salinities and plume signature are validated against in-situ observations and satellite imagery. Model results reveal substantial changes in the length, width and orientation of the plume as the wind direction varied on consecutive days due to winter cold fronts. During a period of near-constant winds and variability in tidal amplitude, the model predicted a larger plume during spring tides than during neap conditions. Coriolis effects on the plume are minimized due to its small scale nature. Therefore, when the wind forcing is weak, the plume signature spreads radially from the inlet with slight preference to the down-shelf. The Choctawhatchee Bay plume is representative of other small-scale plumes formed in river-dominated and micro-tidal environments, and this work demonstrates the sensitivity of these plumes to changing environmental conditions.

R Cyriac, JC Dietrich, CA Blain, CN Dawson, KM Dresback, A Fathi, MV Bilskie, HC Graber, SC Hagen, RL Kolar (2019). “Wind and tide effects on the Choctawhatchee Bay plume and implications for surface transport at Destin Inlet.” Regional Studies in Marine Science, 35, 101131, DOI: 10.1016/j.rsma.2020.101131.

Coastal Engineering Lab in Fitts-Woolard Hall

Construction is continuing on Fitts-Woolard Hall, which will be our home starting in Summer 2020. The photo below is an updated look at our Coastal Engineering Lab. This room will have workspaces for the coastal engineering team at NC State, and its location on the third floor will allow a great view of Centennial Campus. We are excited for the new building!

Updated photo of the Coastal Engineering Lab in Fitts-Woolard Hall.

Continue reading

Improving Predictions of Estuarine Flooding and Circulation during Storms

This project will address the problem of storm-driven circulation and flooding in estuaries. Our motivation is the recent Hurricane Florence (2018), which pushed surge and mixed saline waters into the estuaries of North Carolina (NC). There are remaining questions about how storm surge can interact with winds, riverine flows, and friction in estuarine systems, as well as how stratification is removed during and then re-established after storms.

The research plan will have two components. First, the existing modeling system will be enhanced for the NC estuaries, and numerical experiments will explore the sensitivities of estuarine flooding to the main drivers during storms. By varying systematically the atmospheric forcing, bottom friction, incoming river flows, and other parameters, we will improve our understanding of how storm surge is developed in these regions. Second, the modeling system will be extended to consider density-driven circulation and salinity transport, by leveraging earlier work for estuarine circulation in the northern Gulf. It is known that horizontal salinity transport during storms can threaten marine life and vegetation, but there is not currently a modeling system that can predict both transport and overland flooding. This project will combine those processes and explore questions about stratification during storms. While these interactions are important in estuaries along the U.S. Gulf and Atlantic coasts, they are especially important for the NC estuaries and their nearby communities, which have been devastated by storms in recent years.

The project will also have an extensive education component. Via collaboration with the Coastal Studies Institute, we will develop and implement lesson plans for storm surge and coastal flooding. It is expected that this new program will engage with more than 300 students in northeastern NC. The research team is well-positioned to contribute to these outreach activities, thus benefiting coastal communities in NC.

JC Dietrich, RJ McCord. “Improving Predictions of Estuarine Flooding and Circulation during Storms.” National Oceanic and Atmospheric Administration, North Carolina Sea Grant, 2020/02/01 to 2022/01/31, $119,370 (Dietrich: $99,610).