Welcome to the CCHT! We develop computational models for wind waves and coastal circulation, and then apply these models to high-resolution simulations of ocean behavior. Our goals are to understand how coastlines are threatened during storms, how materials are transported in the coastal environment, and how to convey these hazard risks for use in decision support. Our research spans the disciplines of coastal engineering, numerical methods, computational mathematics, and high-performance computing.

In this web site, we share our research progress, from development to application, and from coding to publishing. Learn more about What We Do and how to Join Our Team.

Seminar: Geospatial Forum

News: Post-Florence Field Observations

2018/10/10 – NCSU Civil, Construction, and Environmental Engineering
CCEE Researchers respond rapidly to Hurricane Florence


Much of the North Carolina coast is lined with sandy beaches and dunes, which can erode during storms, allowing sand onto major roadways and floodwaters into communities. To develop predictions for this erosion and its effects on infrastructure, it was critical to collect observations shortly after the storm. A multi-disciplinary team led by Dr. Elizabeth Sciaudone traveled to Dare County to collect time-sensitive data at Kitty Hawk, Nags Head, Pea Island, and Hatteras Island. Working in conjunction with the Institute for Transportation Research and Education (ITRE), the Center for Geospatial Analytics in the College of Natural Resources, and industry partner SenseFly, researchers surveyed beach and dune changes. Real-Time Kinematic GPS equipment was used to survey select cross-shore beach and dune profiles and document the extent of dune erosion and overwash (inland sand deposits), such as when NC Highway 12 becomes covered after large storms.

Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions

The goals of this project are to better understand the storm-induced erosion of barrier islands, and to develop ways to represent that erosion in predictive models on large domains. The critical objectives will be: (1) Develop a high-resolution hindcast of inlet creation in a barrier island system, (2) Explore the sensitivity of erosion predictions to the quality of input data, and (3) Implement a two-way coupling of small-scale erosion to larger-scale flooding. As a study area, we will consider the erosion of Hatteras Island during Hurricane Isabel (2003) and the creation of the so-called Isabel Inlet. The model will be validated with aerial surveys of island topography, collected immediately before and after the storm. We will quantify the model’s ability to predict the inlet creation given coarse inputs, and identify the necessary resolution to include this process in larger-domain models. The evolving ground surface will be used to update topography in a region-scale flooding model, to examine how flow through the Isabel Inlet affected the back side of the island.

JC Dietrich. “Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions.” U.S. Coastal Research Program, Storm Processes and Impacts Workshop, Technology Challenge, 2018/09/23 to 2019/09/22, $59,950 (Dietrich: $59,950).

News: Storm Surge Modeling during Hurricane Florence

2018/09/13 – The State of Things on WUNC
Hurricane Florence Coverage from Around the State

Hurricane Florence, which is now a Category 2 storm, continues to bear down on the Carolina coast. The National Weather Service says it is likely to be “the storm of a lifetime” for certain portions of that coastline. Officials have ordered the evacuation of over 1 million people from the coasts of North and South Carolina. … Stasio is joined by Casey Dietrich, a professor in North Carolina State University’s Department of Civil, Construction and Environmental Engineering and leader of its Coastal and Computational Hydraulics Team. Dietrich explains the models currently being refined to help predict and plan for hurricanes and their effects on coastlines.

For this episode of The State of Things, the full-length podcast is embedded below. The interview with Casey Dietrich starts at about the 37-minute mark. It was great to describe our projects with DHS, NSF, and NC Sea Grant as part of this episode about Hurricane Florence.