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Subgrid modeling to account for unresolved topography within the context of shallow water equations relies
on the use of coarse grids for computational efficiency. However, excessively coarse grids can lead to artificial
cross flows between hydrologically disconnected areas separated by physical barriers smaller than the grid size.
An approach based on introducing cell and edge clones, consisting of connected groups of pixels in each cell, is
able to systematically remove such artificial cross flows. Such an approach considers that the subgrid barriers
permanently divide flow among clones and effectively restrict flow to a predetermined path. In this work, a
simple algorithm, along with the use of an overtopping formula, is proposed to extend the clone approach to a
scenario in which clones are allowed to be further split and merged as needed, depending on the surface elevation
during a given runtime. The algorithm is intended for accommodating the possibility of the subgrid barriers being
inundated and no-longer dividing the flow during an extreme event. The performance of the proposed algorithm
is demonstrated through a series of idealized and more realistic test cases, showing considerable improvements
over existing methodologies.

1. Introduction

Accurate and efficient storm surge prediction is indispensable to pre-
vent destruction of life and property along coastlines. Storm surge mod-
eling is typically based on numerical solution of the depth-averaged
Shallow Water Equations (SWE). Broadly speaking, two different strate-
gic approaches have been adopted in modern storm surge models based
on their intended purposes. The first is a relatively low resolution ensem-
ble forecast, which relies on using a potentially large ensemble of model
runs on relatively coarse computational grids. The benefit of such an ap-
proach is that predictions of storm surge before a tropical cyclone makes
landfall (Zachry et al., 2015) can be conducted quickly, accounting for
uncertainty in a storm’s track and intensity. However, the use of a coarse
resolution comes at a cost stemming from model errors caused intrin-
sically by inadequate grid resolution such as unresolved bathymetry,
connectivity and unknown roughness from smaller scales. The second
category of modeling approaches is to use high resolution simulations,
which aim to explicitly resolve as many scales of interest as possible.
Such models can be very accurate (Dietrich et al., 2017; Luettich and
Westerink, 2004); however, they come with a high computational cost
and require a large number of CPU cores to complete a run in a reason-
ably timely manner (Hope et al., 2013). This limits their applicability
with respect to ensemble forecast applications. Thus choosing between
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these two options is a trade-off between computational time and accu-
racy. High resolution models are more accurate, but come with greater
computational cost, while low resolution models are fast to execute, but
less accurate (Kerr et al., 2013).

A promising intermediate path to achieve models with both accu-
racy and low cost is through the use of subgrid models, which have
recently become an active area of research in the fields focusing on flow
over tidal flats and wetlands, urban flooding, and storm surge applica-
tions (Kennedy et al., 2019; Wu et al., 2016; Sanders et al., 2008; Sehili
et al., 2014; Stelling, 2012; Wang et al., 2014). Note that while there
is a rich history of subgrid methods in different aspects of fluid flow
and transport modeling (e.g. turbulent flow, porous media flow, multi-
phase flow), different systems are needed for application to coastal mod-
els with unresolved topography. To this end, if higher resolution topo-
graphic and bathymetric information is available and can be directly
resolved in computations, it may be more practical to account for its ef-
fect with a subgrid model. Over the last decade, the resolution of avail-
able topographic data of many coastal areas (and to lesser extent bathy-
metric data) has increasingly become far finer than the level of resolu-
tion affordable for any large scale storm surge model (Danielson et al.,
2018). To best exploit the full potential of this data, it may be useful
for models to include subgrid corrections. Conceptually, subgrid models
are constructed through coarsened properties, such as water levels and
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velocities, combined with integral functions of high resolution ground
elevations, friction characteristics and any other information that might
be available.

Early subgrid models were proposed by Roig (1989); King (2001) and
Defina et al. (1994); Defina (2000), where the idea of an artificial poros-
ity, which is a function of the free surface elevation, was introduced
to account for partially wet areas. The porosity function is used in the
former in the context of a finite element implementation and the lat-
ter in deriving a set of governing equations accounting for partially
wet/dry areas. To deal with the lack of high resolution topographical
data, Defina (2000) introduced an explicit empirical relationship be-
tween porosity and depth, based on the assumption that bottom ele-
vations are distributed according to a given probability density func-
tion. Sanders et al. (2008) applied volumetric and areal porosities in
an integral form of the shallow water equations and discretized them
with a finite-volume framework to study flooding in urban areas. They
considered the effect of buildings on the flow using a drag formula-
tion and a binary density function that equals zero when correspond-
ing to a building, and one otherwise. However, this model did not ac-
count for building interior inundation and is highly sensitive to the mesh
used. Guinot (2017); Guinot et al. (2017) improved this integral poros-
ity model by strategically creating a mesh on the computational domain
such that cell edges intersect with a water-blocking structures. Without
this, the effects of blocking structures do not explicitly appear in this
porosity formulation. While this application appears suitable for urban
areas, it is restricted in more natural settings, particularly in areas with
strong spatial heterogeneity.

Casulli (2009) proposed a semi-implicit finite volume-finite dif-
ference approach on a staggered C-grid with a parameter-free sub-
grid wetting/drying algorithm that uses the porosity function to en-
sure the positivity of the water height and to account for partial wa-
ter volume in partially wet cells. The resulting discrete equations are
(mildly) nonlinear due to the nonlinear dependency of the porosity
function on the surface elevation in the partially wet cells. The pro-
posed algorithm can be used on relatively coarse grids while it incorpo-
rates high resolution bathymetric data at the subgrid level. Casulli and
Stelling (2011) and Sehili et al. (2014) apply this approach to study flow
in Venice Lagoon and the Elbe river, respectively and report that this ap-
proach improves model performance with minimal additional computa-
tional cost. Platzek et al. (2016) combined the semi-implicit method of
Casulli (2009) with a hierarchical grid approach to resolve small-scale
topographical features, with the goal of more accurately accounting for
regions with significant local energy losses in which the authors posit
that, when such losses occur, the subgrid method may not be adequate
and a higher grid resolution is required to improve model performance.

Accurately parameterizing bottom drag effects is another essential
aspect in the development of subgrid models that has received attention.
In Defina (2000); D’alpaos and Defina (2007), the assumption of a con-
stant friction slope was used to derive a formula for bottom stresses ac-
counting for subgrid bathymetry. Casas et al. (2010) presented a method
for subgrid roughness parameterization based on turbulence mixing
layer theory. Viero and Valipour (2017) introduced anisotropic bottom
roughness for some special cases, where models were able to preserve
mesh-independence for relatively simple benchmark cases made up of
structures with regular shapes and patterns. Based on Casulli’s subgrid
formulation, Volp et al. (2013) developed a finite volume subgrid model
on the staggered C-grid that employs an analytical subgrid velocity of
a simplified canonical flow (a channel flow with a uniform flow and
constant friction slope) in subgrid corrections of bottom friction and
advection terms. The aforementioned corrections improved model per-
formance when there is a large variability of water depth in a coarse
grid.

More recently, Kennedy et al. (2019) developed an upscaled form
of the 2D shallow water equations through the use of formal averag-
ing methods. The upscaled system of equations are structurally similar
to the standard shallow water equations, but have additional terms re-
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Fig. 1. Cross-section of a barrier and water levels of a coarse grid. a) the system
can be represented by a single bulk surface elevation and velocity. b) two inde-
pendent surface elevations and velocities are required to represent the system.

lated to integral properties of the fine-scale topography and flow. They
identified different levels of closures of varying complexity. A number
of subgrid approaches can be recovered through certain sets of closures.
Their model provided a platform to implement subgrid corrections of
bottom stresses, advection, and surface gradient terms (the corrections
to the gradient of mean water surface elevation are indeed less obvi-
ous and are intended for situations where flow characteristics change
strongly within an averaging volume).

While the aforementioned advances have led to great improvements,
accounting for subgrid connectivity continues to present a substantial
challenge due to an assumption of ‘subgrid connectedness’ for given
coarse flow variables. Fig. 1 shows a simple example of subgrid con-
nectedness. When the water surface elevations on either side of a barrier
are independent quantities, one water surface elevation is not sufficient
to represent the system in the coarse grid. However, if the surface el-
evation is high enough to inundate the barrier, a single variable may
be enough to represent the water surface elevation. Wu et al. (2016),
who adopted a pre-storage of necessary quantities to increase compu-
tational efficiency, note in their numerical simulation of flow in salt
marshes that the level of grid coarsening is limited by bathymetric fea-
tures, mainly due to the assumptions of a constant surface elevation
within a coarse cell; it is suggested that any coarse grid used should be
able to resolve general topographical features such as major channels
and blocks. Platzek et al. (2016) suggested a hierarchical grid approach
utilizing a multigrid concept to resolve small bathymetric features, but
this comes with increased computational costs and their approach was
intended for quasi-steady state problems. To correct surface connectivity
issues, Hodges (2015) developed an automatic edge blocking approach
that represents features along Cartesian coarse cell edges; the approach
has been used to study many aspects of salt marshes (Li and Hodges,
2019a; 2019b). However, inaccurate approximations of water surface
elevation remain unavoidable in coarse grid settings where edge block-
ing prevents flow within the coarse cell with the block which, depending
on the problem at hand, can be detrimental to model predictions.

Recently, Casulli (2019) introduced a cell clone approach to remove
an artificial cross flow between disconnected areas within a cell. The ap-
proach takes advantage of the nature of the staggered C-grid in that the
surface elevation is placed at the cell center and flow velocities that con-
nect two adjacent cells are placed at the edge center. To represent flow
paths, each cell and edge are then ‘cloned’ as many times as necessary
based on disjoint groups of connected areas at a given predetermined
surface elevation. The surface elevation and velocity among the cell and
edge clones of the host cell and host edge are then permitted to have
different values, essentially allowing for the possibility of having more
degrees of freedom on a single cell and edge. This approach was used
to study tidal flow in Sacramento-San Joaquin Delta area, where even
relatively coarse grids showed good agreement with high resolution sim-
ulations. In this approach, by construction, cell clones of a host cell are
permanently disconnected from each other during a simulation. With-
out modification, the approach does not permit an inundation of subgrid
blocking features inside the coarse grid, a scenario likely encountered
during extreme events such as storm surge. Casulli (2019) suggests that



A. Begmohammadi, D. Wirasaet, Z. Silver et al.

this issue can be overcome by using a properly formulated weir formula
to re-establish the connection between two adjacent cell clones. While
the weir formula permits re-establishment of the connection, it is poten-
tially insufficient when a subgrid barrier is fully submerged. Addition-
ally, the original work of Casulli does not consider a possible scenario in
which flow within each clone becomes physically separated by subgrid
barriers as the water level recedes (i.e. subgrid connectivity is assumed
within the clone). In this study, we propose an extension to Casulli’s
approach to overcome these limitations.

In §2, we first summarize Casulli’s original clone method (Casulli,
2019). Subsequently, we describe a simple approach that is based on
further cloning of a cell clone into sub-clones that may or may not be
connected depending on the value of the current surface elevation. Sub-
clones are allowed to split and merge in order to capture the effect of
small barriers that are submerged or emerged when the water surface
elevation rises or recedes. In §3, we describe implementation of the pro-
posed approach in the upscaled SWE model of (Kennedy et al., 2019).
The performance of the proposed algorithm to deal with flooding and
draining is demonstrated in §4, using test problems of increasing com-
plexity and a real setting. Conclusions from the study are drawn in §5.

2. Methodology

As standard subgrid approaches assume connectivity throughout
a cell, excessive coarsening, while reducing computational cost sub-
stantially, can lead to flow connectivity problems, where features that
should not be connected in reality are still connected numerically, caus-
ing inaccurate estimates of water surface elevation. In section (2.1-2.2),
we describe Casulli’s method (Casulli, 2019) in which each coarse grid is
cloned based on connected pixels to remove artificial cross flows. Build-
ing on this, we propose a method that splits a cell clone into sub-clones,
where barriers inside a cell clone can emerge at set water surface el-
evation. In section (2.4), a simple method is presented to connect the
sub-clones of a clone.

2.1. Computational grid and pixels

Here, we adopt the terminology used in Casulli (2019). More specif-
ically, we consider a raster-based digital elevation model (DEM) with
uniform resolution 6 and parameter b defined over the entire grid; this
might represent the bathymetric depth from still water used to define a
computational domain. We denote each single point as a pixel. A grid
cell, used as the basis for a computational model, is made up of a group
of such pixels. For the highest possible accuracy, a numerical model
should account for the information provided by each pixel. Indeed a
grid cell can be as small as an individual pixel or as large as the entire
computational domain. To maximize efficiency, when using a subgrid
model, the computational grid should be allowed to be much coarser
than an individual pixel, but still incorporate as much information from
each pixel as possible. Let us define the size of grid cell as p x ¢ pixels of
size §. By partitioning the pixels of a computational domain into M x N
subarrays representing host cells of size Ax =pxé and Ay=¢gx3$, a
coarse grid is obtained. In order to define pixels on a cell edge, the min-
imum pixel values of two adjacent cells are set as an edge pixel. Thus
each pair of two cells has either p or ¢ edge pixels. For efficiency, pixels
that are not likely to be flooded, i.e. pixels where elevation values are
larger than the maximum possible surge are marked as inactive within
the computational domain. A cell is marked as inactive if it contains no
active pixel. The same is done for cell edges. An active cell edge has at
least one active edge pixel, otherwise, the cell edge is marked as inac-
tive.

2.2. Cell and edge clones

To begin, we define a reasonable range of surface elevations (7, <
n < Nyax)> Dased on extreme inundation and receding water levels. Pix-
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Fig. 2. Host cell, colored area are active pixels, thick gridded black lines show
the coarse grid.

)

els that are not likely to be flooded are marked as inactive (—b > #ypa5)-
The remaining pixels are called active pixels. If there is a continuous
path of active pixels between any two pixels, these two pixels are called
connected pixels. Within a grid cell, there may be multiple groups of con-
nected pixels that are separated from one other. Similarly, edge pixels
that are not likely to be flooded (—begge > fivax) are marked as inactive
edge pixels. Each cell edge that contains one or more active pixels is an
active edge; otherwise it is an inactive edge.

At the maximum surface elevation ny,y, the host cell is cloned a
sufficient number of times based on the number of separate groups of
connected pixels. Each clone of a host cell only contains one group of
connected pixels. The clones of a host cell are assumed not connected
with each other under any extreme situation (to fully achieve this con-
dition, #y,, should be sufficiently high; in practice, a reasonable value
of #yax is the maximum probable surge height for the area of interest
based on the historical surge event). Each clone of a host cell has a con-
stant water surface elevation, but this can be different among the clones
within the same host cell. Similarly, a host edge pairing two host cells is
cloned a sufficient number of times where each edge clone is a group of
edge pixels shared by two clones of such neighboring cells. These edge
clones provide the connectivity information between each host cell and
its neighbours. Each edge clone of a host edge is assumed to have a
constant discrete velocity perpendicular to the edge (either u or v) but
this velocity can be different among edge clones of the same host edge.
Therefore, the cell and edge clone approach provides more degrees of
freedom for the host cell that leads to a more accurate representation
within the coarse grid, where small scale structures disconnect flow.

To help further illustrate our point, the grid cells, active pixels, and
cell and edge clones of a meandering river are shown in Fig. 2. Groups
of connected pixels are highlighted with different colors. Let us focus
on the host cell (i, j) located in the center of the domain. It can be seen
that there are two disjoint groups of connected pixels Q,'/ and 912, On

its western (left) edge I',_1 » there are two groups of active edgesI'! |
2 =3

; the former connects the clone Q! and Q,_, ; and the latter

i—3. J =

connects 912/ and Q,_; ;; on its northern (top) edge, the set of active edge

pixels ", | connects Q! and Q, ,,; on its eastern (right) edge, T, |
ij+ L] 5] l+§,/

connects le and Q;, 7 there is an inactive edge in the south (bottom)

edge (1“1,]; 1). So this host cell has two cell clones, which could have
w2

different water surface elevations; the host edge to the west (left) of this
host cell has two edge clones, which could have different u velocity;
the host edges to east (right) and north (top) have single values of the
u and v velocity, respectively; the host edge on the south (bottom) is
inactive (and thus is treated as a dry edge). It is important to note that
cell clones of a host cell share the same geometric center. Edge clones of
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(a)
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Fig. 3. Host cell, colored area are active pixels, thick gridded black lines show the coarse grid. a) cell clones at 7 = . b) cell clones and sub-clones at 7, < -
¢) cell clones and sub-clones at 5, < ;. d) cell clones and sub-clones at 1 = n;,,. Note that Q*>¢ a = cell clone, b - level, ¢ = sub-clone number.

a host cell have the same length and geometric position of an edge cell.
Therefore, a cell clone is a copy of the host cell including a connected
path of active pixels, and a clone edge is a copy of the active host edge
including a connected path between two neighbouring cell clones of two
adjacent cells. Furthermore, each active pixel belongs to just one single
clone of a host cell and each active pixel of an edge clone belongs to just
one edge clone.

2.3. Sub-clones

If a cell is cloned sufficiently at the maximum surface elevation to
remove artificial cross flows, such cross flow may still exist at surface
elevations less than ry,y, i.e. in between nyg, < 7 < fyax, @S New barri-
ers appear at lower surface elevations and split a cell clone into two or
more groups of connected pixels (as illustrated in Fig. 3). Each of these
groups of connected pixels is hereafter called a sub-clone. A sub-clone of
a cell clone may or may not be connected to one sub-clone or multiple
sub-clones of the host cell clone at a given surface elevation. For simplic-
ity and efficiency purposes, the horizontal size (an area) of a sub-clone
is considered as a constant during the simulation. For each sub-clone,
a minimum water surface elevation is defined based on the minimum
bathymetry of the sub-clone to determine the wet/dry condition of the
sub-clone. If the water surface elevation of a sub-clone goes under the
minimum bathymetry of the sub-clone, the sub-clone is removed from
the computational domain due to the dry condition of the sub-clone.

Fig. 3 shows an example of host cells and their wet areas at four dif-
ferent water levels (i, = 19 > 1y > 1 > 13 = Mygp)- At the maximum
surface elevation 7y, three cell clones (Q}’j,Qij,Qij) can be seen.
These three cell clones are not connected with each other. By reduc-
ing the water surface elevation to 7;, cell clone number 2 (Q2 ) is di-

vided into two disconnected sub-clones (92 Ll and 92 L, 2) These two
sub-clones are disconnected at the specific surface elevatlon (n,). Here-
after, this surface elevat1on is called the connectivity surface elevation
(a lengthy notation 7,7} . where n denotes a clone number and m a sub-
clone level will be used to precisely indicate the connectivity surface
elevation when some ambiguity arise). This water surface elevation is
used to connect sub-clone Qi}l‘l to sub-clone 9‘2/22 At water surface

elevation #,, this clone is divided into three sub-clones (Q2’]" 92’2’1

and 922 2) Note that sub-clone 522 1.2 is divided into two sub- clones at

the connect1v1ty surface elevation 112 =102 (1) The connectivity surface

elevation can be found for each sub- clone by sampling reduced water
surface elevations. At surface elevation 75, one of the sub-clones (Qi}l’l)
disappears altogether due to the dry condition. Thus for surface eleva-
tions in the range of nyy, < 73, sub-clone 522/1 ! should not be considered
during computations. Fig. 4 shows the algorithm to find cell clones and
sub-clones of a domain step by step.

A sub-clone has four edges. At each edge, a velocity, perpendicular
to the edge, is defined. If there are no active pixels on one sub-clone
edge, that edge is inactive and it is not connected to the adjacent host
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Partition a digital Defined consid-
Determine cell
elevation model ered elevation
clones at Mniax
into p X g cells range: MMax, Min

(s) number of cell

Cell clone (¢ = 1),

clones are produced
Water level step n =1

for the domain

Check cell clone (%)

for sub-clones at n=n-+1

n

N = NMax — né

Save sub-clones

n

and np = 7",

More than 1 connected Determine con-

pixel at n"? nected sub-clones

If (i = s)

Yes

Determine the sub-
clones connectivity

with neighbour cells

End

Fig. 4. Flowchart representation of algorithm to find cell clones and sub-clones of a coarse cell. (s) is the number of cell clones. 6 = M (r) is the number of
cell clone levels.
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(a)

Fig. 5. Host cell- a) the host cell at surface elevation of #,. b) the host cell at surface elevation of #, > 7.

cell. However, it is possible that a sub-clone edge could be active within
some range of the water surface elevations and be inactive in the others.
Note that sub-clones of a cell clone share the same size and geometric
center as the host cell. Therefore, a sub-clone is a copy of the host cell
including a connected path of active pixels. Furthermore, each active
pixel of a clone belongs to just one single sub-clone of a cell clone. A sub-
clone edge has the same geometric location and length of the host cell
and each active pixel of an edge cell belongs to just one sub-clone of a
cell clone. To reduce the computational cost, isolated sub-clones that are
much smaller than the coarse grid are removed from the computational
domain. (If a sub-clone does not connect with the cell clones or sub-
clones of the neighbor cells, it is considered an isolated sub-clone)

2.4. Merging and splitting sub-clones

In this section, we propose a method to connect sub-clones of a cell
clone when blocking structures inside the cell clone are submerged.
Fig. 5a shows the host cell Q, ; at the maximum surface elevation #y,y.
This cell has three cell clones of Qil‘j, 912, and Qf} Fig. 5b shows the sub-

clones and clones of this host cell at connectivity surface elevation ”;2{ (11, Iy
It can be seen that cell clone ij splits into two sub-cell clones Q,.Z’jl‘l and
lejl 2 (as surface elevation increases above the connectivity surface ele-

vation, sub-clones are merged). Therefore sub-clones Qiz’jl’l and Qf’jl’z at

surface elevations rli’l < n are submerged and one sub-clone is consid-

ered instead. During("tﬁe simulation, when the water surface elevation
reaches the connectivity surface elevation (ni::w,)) for two connected or
more connected sub-clones, they are merged and one cell clone is con-
sidered (Qij). This cell clone has one surface elevation, which is the
average surface elevation of the connected sub-clones when the surface
elevation of each sub-clone passes the connectivity surface elevation.

However, it is possible that the surface elevation of one of the sub-
clones reaches the connectivity surface elevation ahead of the other
ones. Here, a sub-clone cell which is connected to the inlet (has the
higher water surface elevation) is called a source sub-clone and the other
sub-clones are called receiver sub-clones. To deal with this, an overflow
formula is used to connect the source sub-clone to the receiver sub-
clones until the water surface elevation of the receiver clone reaches
the connectivity water surface elevation. Thereafter, one cell clone or
sub-clone with one constant surface elevation can be considered.

For simplicity, the overflow is modeled as a sharp-crested weir, al-
though we note that this could readily be changed as needed should a
better option be available. A sharp-crested weir is an overflow structure
consisting of a vertical plate with a sharp-edged crest mounted perpen-

(b)

el

Approach
section

Fig. 6. Sharp-crested weir.

Yij+d

K T

Fig. 7. Staggered grid with locations of he surface elevation and velocity com-
ponents.

dicular to the flow direction, as shown in Fig. 6. A simple empirical
formula is used to assign an overflow between disconnected sub-clones
of a cell clone.

Downstream of a sharp-crested weir, free flow occurs when the weir
allows free access of air under the nappe. The weir will be submerged
if downstream water rises near or above the crest elevation. Based on
the experimental work of Kindsvate (Kindsvater and Carter, 1959), the
following formula is used to approximate discharge

(3/2)
0 =k, V28 Lo, hY/ m
where k,, = 2/3 is a constant, L,,, is effective width, and A, is effective
depth in regard to the shape of weir.
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Fig. 8. Channel block systems alongside the location of coarse grids. Blue area
iswet b = —3 m and yellow area is dry b = 25 m. Solid black lines are the location
of coarse grid. The time series of surface elevation are recorded at Station 1,2.
a) is channel configuration A. b) is channel configuration B. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

In the context of a cell clone, we can calculate discharge from the
source cell to the receiver cell based on (1) for each time step until the
water surface elevation of receiver cell reaches the connectivity water
surface elevation (#,). Once such a state is reached, the average water
surface elevation of the source and receiver clone is computed for a sin-
gle constant water surface elevation of the merged cell clone by means
of

e = 77— = buc. Vic =Vsc +Vre @
McC

where A and V denote the area and volume of a cell, b is the averaged
bathymetric depth where the average is the combination of wet areas of
connected cells, and subscripts MC, SC, and RC denote merged sub-
clone, source sub-clone, and receiver sub-clone, respectively. To con-
serve mass in any situations, a better approach can be employed where
the volume of a merged sub-clone is computed from the high resolution
bathymetric data as a function of the surface elevation, i.e. given the
volume of the merged sub-clone from Eq. (2), the water surface eleva-
tion is determined from the inverse relationship of the volume and the
water surface elevation curve of the merged cell.

For the parameters in (1), we use A,y = #,,,... — 11, and for simplic-
ity L,, = Ax or Ay. At each time step, discharge is calculated for the
receiver clone.

3. Governing equations
3.1. Subgrid model discretization

The two-dimensional depth-averaged shallow water equations are
considered. Conservation of mass is given by

JoH + 0HU 4 OHV JHV
Jat ox dy

=0, 3

where 7 denotes time and U(x, y,t) and V(x, y,t) are the vertically av-
eraged water velocity components in the x-direction and y-direction,
respectively. Here, H = 5 + b(x, y) is the local total water depth, where
n denotes the surface elevation and b(x, y) bathymetric depth. The mo-
mentum equations in the conservative form are

JHU 0 Thx ~ Tsx

—+—(HUU)+—(HUV)+gH— =-
ot ox p

10P, 1{0Hr,, OHrt,,
S 2
p Ox fe < 0x ay

“
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Fig. 9. Blocked cells and their clones: a)-c) channel configuration A. a) block
cell, b) cell clone 1, c) cell clone 2, d)-f) channel configuration B. d) block cell,
e) cell clone 1, f) cell clone 2.

)

and
on Ty, — T
ﬂ+—( VU)+—(HVV)+ -
ot dy p
10P, 1 aHTyx 0H‘ryy
- -—=+fHU+ + , 5
p Oy L p( ox dy ©

where 7, and 7, are bottom stresses and surface stresses, respectively,
P, is local atmospheric pressure, f. is the Coriolis parameter, and 7.,
Tyy = Ty, and 7, denotes the lateral stresses due to turbulence mixing.

For the bottom stresses, we consider quadratic formula:
Ty

7=7U, y=C/|U| (6)
where C/ is a bottom drag coefficient. For simplicity, in this study, the
Coriolis force, wind stress, atmospheric pressure, lateral stresses are ne-

glected, although they can be readily included should they be required.
3.2. Upscaled equations

We consider the upscaled SWEs proposed by Kennedy et al. (2019).
These equations are derived from formally applying averaging tech-
niques (Whitaker, 2013) to the SWEs presented in the previous section.
The upscaled mass equation is

V() 0<H>(U> + H(HNV)
ot ox dy

=0, (O]

where V,,((n)) denotes the wet volume per unit area for a given wet-
averaged surface elevation (n), (U) = [ HUdV/ [ HdV is the velocity
vector averaged to the grid level, and (H) denotes grid-averaged water
depth. The upscaled momentum equations are

22wy oy + L (couwyvm)
+ 2 (Coy UXUXH)) = —g<H>< o CMY%)
_¢|<U>|(CM,fxx<U>+CM-fxy<V>) (8)
(H >0<V> (V)V.(U)(H)) + i(CVUW)(U)(H))
; 0
+ E(va<V><V><H>) g(H)< m.yx ;z> + Cr”yyé_’;’)>
— PO (Crr U + Copg (V) ©

where (-) brackets denote grid averaged quantities, except for velocity
and water surface elevation, where they are understood as a volume
average and wet (intrinsic) average, respectively. In 8-(9), ¢ = A,,/Ag
denotes the wet area fraction ; Cy;, Cyy, Cyy, Cyy are coefficients ac-
counting for subgrid corrections associated with the nonlinear convec-
tion terms; C, is the subgrid correction of the surface gradient coeffi-
cient; and C,, is effective bottom stress coefficient.

Several closures for determining the subgrid correction parameters
are proposed in Kennedy et al. (2019). Here, we consider the so called
Level O closure. This closure uses fractional wetting and drying over
the grid cell for mass correction, but makes no sophisticated attempt at
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Fig. 10. Time series of surface elevation 7. a) channel configuration A. Station 1 (connected to the inlet). b) channel configuration A. Station 2 (in the secondary
channel). ¢) channel configuration B. Station 1 (connected to the inlet). d) channel configuration B. Station 2 (in the secondary channel).

subgrid corrections for the momentum convection and surface gradient
terms. More precisely, subgrid parameter are set to:

Crxx =Cpyy =1, Crxy = Cpyx =0, 10
Cr.sox = Crpyy =(Crles Oy = Crrpyx =0 an
Cyy =Cyy =Cyy =Cyy =1, 12

3.3. Discretization

The upscaled three Egs. (7)-(9) have three unknown solution func-
tions (1), (U), and (V') (the averaged water depth (H) = V,, is taken to
be a known variable and determined from (x) and a given DEM b(x, )).
They are discretized on a staggered C-grid with a semi-implicit finite
difference method (see Fig. 7). The unknown variable (#) is placed at
the cell-center and (U ), (V') are located at the midpoint of the vertical
and horizontal cell edges, respectively. The advection term in (8) and
(9) is discretized explicitly via an upwind scheme. The surface gradient
and bottom stress terms in the momentum equations and velocities in
the continuity Eq. (7) are discretized implicitly to avoid restrictions on
At from the \/gh wave and stiff bottom friction source term when the
value C,, is large. We refer to Kennedy et al. (2019) for more detailed
account of the numerical method. Below we describe the modification
of the method to include the methodology described in Section 2.

To keep the notation simple, n, H, u, and v will be used to refer
to the averaged variables (n), (H), (U), and (V'), respectively. Suppose

that, at the time level 7 = Ar, we have a set of wet clone edges and cell
clones with at least one wet edge. Note that cell clones correspond to
sub-clones when the water surface elevation in a clone drops below the
connectivity water surface elevation level (see Section 2.4), which de-
termines particular sub-clones to be considered. With such the sets at
hand, the discretization of the governing equations is as follows.

A semi-implicit discretization of the momentum equations is written
for each ‘clone’ edge, which could be a sub-clone of a host edge. The
discretization of the x- and y-momentum equations carried out at the
vertical and horizontal edges are, respectively:

1 At
uth = — H" W —-AMF' —g—H" (r]“l].—nf'f') ,
i+3.  H* i+5. i+5.J i+1.j Axitg N\ LT

i+5.j
13)
and
Un+l — 1 H" o — AtG" _gﬂHn (nn+1 _nfl-!—l)
Lj+3y H[*j+l Lj+s ity Lty Ay ijeg b T
Jtay
(14)
where
1 " 1
= wrar M T E ey A
1+§,j 1+ oJ +yi+%‘j ! ”j+7 i, +% +yivf+% !
and F, | ; and G, j+1 Tepresent the discretization of the advection terms
2 2

(see Kennedy et al. (2019) for more detail of these terms). It is empha-
sized that, in (13)-(14), the notations are overloaded for notational sim-

plicity. More specifically, in (13), u,, 1 /’ H,_ ; must be interpreted as
2 2
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Fig. 11. Channel and block system. Dark blue is wet area (b = —3 m), yellow
is dry area (b = 25 m) and light blue is a blockage (b = 0 m). Solid black lines
are the location of coarse grids. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Sub-clones of the block cell with 5, = 0. a) sub-clone 1. b) sub-clone 2.

the u-velocity and water depth associated with a (sub-) clone edge of
the (i, j + 1) host edge; 1, +1,; and n;; are the surface elevations of two
(sub-)clones from neighboring host cells to which the connected path is
through the clone edge considered. The approximate solution variables
in (14) are interpreted in an analogous manner.

For each ‘clone’ cell, which could be a sub-clone, of a host cell, the
discretization of continuity Eq. (7) with the Euler backward time dis-
cretization is considered

n+ly _ n
V(ni»j ) V(”isj) + L 2 us,n+l Hs,n _ Z us,n+l Hs,n
At Ax -1 in

1 1 .
i+5,) it+5.J =35, I=35.]
seE+h.p) 2 Y seEG-15) 2

1
+A_ z

Ux,n+1 H.v,n _ z U‘_”H—I th = 0 (15)
SEE(.j+1) 2

Lty ity L
SEE("J—Q)

where V (y; N denotes the volume per unit cell area of the clone consid-
ered (7; ;s overloaded for notational simplicity), E(i + % ), E(i — % i
EG,j+ %, and E(i,j — %) represent a set of (sub-) clone edges connect-
ing the clone considered to (sub-)clones of neighboring host cells along
the east, west, north, and south edge of the clone, respectively. The su-
perscript s in u and H is used simply to denote that they are a quality
associated with the clone edges.

The approximate solution #"*!, u"+!, v"*! can be obtained either by
(i) solving the system of nonlinear Egs. (15),(13), and (14) simultane-
ously or by (ii) solving a reduced system of equations arising from the
substitution of (13), and (14) into (15) Casulli (2009). Such a reduced
system of nonlinear algebraic equations in a more compact form is given

1
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by
V(nnJrl) + Tnn+1 =b (16)

where 7! is a vector of the solution at the next time level, T is the ma-
trix resulting from the substitution, V is the vector of the water volume,
and b is the known right hand side vector. Note that T is symmetric with
positive diagonal entries and negative off-diagonal entries. The system
of Eq. (16) is (mildly) nonlinear and is solved with the Newton-Raphson
method to obtain #"*!. Subsequently, the velocities at the time level
n+ 1 are computed in a back substitution step from (13) and (14) with
the now known #7"+!.

Subsequently, the approach described in Section 2.4 is carried out.
More precisely, in a scenario of overtopping, the weir formula (1) is
used to approximate discharges between sub-clones to update the sur-
face elevations of sub-clones which, in turn, are employed in informing
whether sub-clone merging is to be conducted. The resulting surface el-
evation is subsequently used in updating the set of active cell clones and
edge clones prior to the next integration step. The set includes any clone
having at least one wet edge and wet clone edge. The wet/dry state of
an edge cell is determined based on an edge surface elevation. The edge
surface elevation is obtained by taking the mean of the surface eleva-
tion of the pair of cells to which it connects (other approaches such as
upwinding can also be employed). If the computed surface elevation is
greater than maximum pixel depth over the clone edge, this edge is wet.
Otherwise it is regarded as dry. It is important to note that the number
of cell clones and edge clones can differ from time step to time step due
to the possibility of merging and splitting of clones/sub-clones. Further
explanation of the numerical implementation is provided in Appendix A.

4. Tests and validation

In this section, the ability of the present algorithm is demonstrated
through a set of test cases ranging from idealized test cases to more
complex and realistic settings. Boundary conditions are used to drive a
flooding cycle in all of the test cases. Atmospheric pressure and wind
stress are not considered in the following simulations because those are
not expected to play a significant role in any conclusions made. Viscosity
u, is neglected due to relatively coarse gridding. The Manning formula
is used to determine a bottom drag coefficient:

2

gn
C

;= i a7

where n denotes the Manning roughness coefficient. The Manning
roughness coefficient and magnitude of gravitational acceleration are
set to n = 0.02(s/m'/3) and g = 9.81(m/s?) for all simulations. Tests here
are divided into three main groups:

1. Channel and block systems.

2. Meandering river and bays.

3. Flow in Buttermilk Bay, a complex bay channel system with mea-
sured Lidar bathymetry.

In all numerical tests, the following water surface elevation boundary
condition is imposed on the inlet of the computational domain

2t

x,0,1) = agptanh | =

n( ) 0 < T

r

) cos () (18)

where a, denotes the forcing amplitude, and 7, is the ramping time.
For the following simulations, the value of tidal frequency is set to
® = 1.4544 x 10* 1 and the amplitude of the tide to a, = 2 m. For the
Buttermilk Bay test case, this amplitude is unrealistically large and is
used to demonstrate the robustness of the subgrid model. The tidal-
like boundary condition is imposed gradually with a ramp up time
of T, = 0.25 day. Unless otherwise indicated, the maximum and mini-
mum surface elevations used in cloning are set to ny,, = (a, + ¢) and
fviin = —(a, + €) with e = 0.2 m.
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Fig. 13. a) Time series of surface elevation 5 at a location behind the blockage of 0 m high. b) Time series of surface elevation # at the location behind blockage of
1 m high. Red line is the reference solution (FD/FV). Green line is the level O closure subgrid model. Black dashed line is the level O closure subgrid model with the

sub-clone implementation.
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Fig. 14. Meandering River and Bays. Solid black lines depict the computational
grid used in coarse grid solutions. Three cells are marked by black stars. Three
stations are marked by white circle.

4.1. Channel and block systems

4.2. Permanently disconnected configurations

A first test of the cell and edge clone methodology is performed in an
idealized channel with an interior blockage. Two such geometric config-
urations are depicted in Fig. 8. These systems consist of a channel and a
block that splits the channel into two disconnected parts. The surface el-
evation boundary condition (18) is imposed on the southern part of the
computational domain. As a result, the water surface elevation should
remain constant for the entire simulation in the secondary channel.

Three simulations with varying grid sizes are performed. The first is a
high resolution simulation with Ax = Ay = 2 m, where this high resolu-
tion case is taken as the ground truth reference solution. The coarse grid
simulations use Ax = Ay = 256 m and are run with and without cell and
edge clones implementation. Fig. 8 includes grid lines of the coarse grid
simulation. It can be observed that, in both configurations, the coarse
cell with the block has two wet edges. As the upscaled SWE equations
consider subgrid connectivity, an artificial cross flow will be seen in the

10

secondary channel. To remove this artificial cross flow, the cell with the
barrier is cloned twice as there are two groups of connected pixels. This
host cell can have two different surface elevations. Cells with blocks and
their corresponding cell clones are depicted in Fig. 9.

The time series of water surface elevation in the channel connected
to the inlet at station 1 (x = 128 m and y = 200 m) and in the secondary
channel, station 2 (x = 128 m and y = 1000 m) of channel configuration
A and in the channel connected to the inlet at station 1 (x = 128 m and
y = 200 m) and in the secondary channel, 2 (x = 600 m and y = 650 m) of
channel configuration B are plotted in Fig. 10 for the three simulations
(b and d of this figure plot the surface elevation at the location in front of
the barrier). As expected, the high resolution produces a constant water
surface elevation in the portion of channel behind the block. However,
the time series of water surface elevation of the coarse grid calculation
(the green line) is different from the reference solution, where the sur-
face elevation in the range of —2 m to 2 m occurs due to an artificial cross
flow inside the cell with the barrier. After performing the cell clone pro-
cedure for this block cell, the artificial cross flow in the coarse grid is
removed and the time series of surface elevation (the black dashed line)
is constant.

4.2.1. Inundated configurations

This next test case is similar to the configuration A of channel block
system in the previous example, except for the height of the block. In
this test, the height of the block enables surface elevation connectivity
between two channels as the flow rises above a certain surface eleva-
tion (Fig. 11). We use this test case to demonstrate the ability of this
algorithm to handle merging and separation of sub-clones. For the first
test case, the height of the block is » = 0 m, which is equal to the initial
surface elevation of the secondary channel. According to the reference
solution when the water surface elevation is less than 0 m, the chan-
nel splits into two disconnected parts. Thus, the block cell contains two
sub-clones at the surface elevation of #,,;, < # < 0 and no sub-clones at
the surface elevation of 0 < 1 < #,,,. The block cell is cloned two times
based on the connected pixels at the connectivity surface elevation n = 0
shown in Fig. 12. Therefore, two parts of the channel are disconnected
and there should be no cross flow from the inlet to the second part of the
channel. When the water surface elevation reaches n > 0 (the first time
step), then the original cell with one surface elevation is considered in-
stead of two cell clones. During draining, when water surface elevation
reaches zero, the block cell splits into two cell clones with the surface
elevation of each clone being that of the block cell.

The time series of water surface elevation at the end of the secondary
channel (x = 128 m, y = 1050 m) is shown in Fig. 13a for two different
grid sizes (Ax = Ay = 2 m and 256 m). Without clone implementation,
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Fig. 16. Sub-clone of marked cell 2. a) sub-clone a at n = 0.5. b) sub-clone b at n = 0.5. c¢) sub-clone c at # = —0.5. d) sub-clone d at n = —0.5.

the two parts of the channel are connected in the coarse grid calculation
resulting in artificial cross flows. With cell clone implementation, the
wetting/drying state of the coarse grid solution is similar to the high
resolution data.

In a second example, the height of the block is set to 1 m. The initial
surface elevation of the secondary channel is set to 0 m. Thus, initially
the primary and secondary channels are disconnected and and become
connected (disconnected) as the surface elevation of primary channel
raises above (recedes below) the blockage height. In the coarse grid

11

calculation with clones, the connectivity surface elevation in the (1,3)th
host cell is equal to the blockage height; the splitting and merging of sub-
clones occurs at this height. Note that when the water surface elevation
of the source sub-clone (the clone in front of the blockage) reaches 1 m
for the first time, the water surface elevation of the receiving cell is
0 m. This large difference of water surface elevation prevents merging
sub-clones because the average water surface elevation of the source
and receiver sub-clones will be less than the height of blockage. For the
first cycle, the present approach applies the overflow formula to connect
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Fig. 17. a) Time series of surface elevation 5 at location 3. b) Time series of surface elevation 7 at location 2. b) Time series of surface elevation 5 at location 1. In the
legend, ¢ shows the cell clone implementation and cs shows the sub-clone implementation. (6x = §y = 4m, §x = 5y = 1000m cell clone implementation and sub-clone

implementation are on the top of each other).

the receiver sub-clone to the source sub-clone until the water surface
elevation of the receiving clone reaches the height of blockage.

The time series of the surface elevation recorded at the end of chan-
nel (x =128 m, y = 1050 m) are shown in Fig. 13b for the reference
solution and the subgrid model without cloning and with the proposed
cloning approach. For the high resolution case, it can be seen that the
water reaches the secondary channel at an elevation of 1.95 m dur-
ing the first tidal cycle. Then wetting/drying occurs at the elevation
of 1 m as expected. With our proposed technique, the result from the
subgrid model with cloning and sub-cloning is in good agreement with
the high resolution simulation, while it is not for the subgrid model
without clones. It is noted that, in the first cycle, there is a small dif-
ference between the high resolution time series of surface elevation and
sub-cloning technique. This mismatch in the surface elevation occurs
because of the overflow formula.

4.3. Meandering river and bays

An idealized setup reflecting a meandering river with two blocks in
the middle as well as three artificial lakes is shown in Fig. 14. The largest
lake is connected to the meandering channel. Two narrow barriers can
be seen in the middle of the river. The western barrier has an elevation of
—0.5 m with eastern barrier elevation 0.5 m. A tidal-like boundary con-
dition (see (18)) is imposed on the southern part of the computational
domain. The amplitude of the tide is a; = 2 m and the tidal period is 12
hours.

12

Four different simulations are conducted. A high resolution simula-
tion with grid size Ax = Ay = 8 m is used as the reference solution. Three
subgrid simulations on the coarse grid of Ax = Ay = 1000 m are consid-
ered; they consist of (i) subgrid level 0, (ii) subgrid level 0 with Casulli’s
cell and edge clones (Casulli, 2019), and (iii) our sub-clones approach.
As a reminder, the maximum and minimum surface elevations are set to
Nvax = 2.2 m and g, = —2.2 m. Fig. 14 shows the coarse grid with three
marked cells (black-star symbol). These cells include a disjoint group of
pixels at the maximum surface elevation. The cell clones associated with
each host cell marked are depicted in Fig. 15. Marked cell 1 and 3 each
have three cell clones and marked cell 2 has two cell clones. To find
the sub-clone of a cell clone, the number of disjoint connected pixels is
checked for each cell clone at a number of surface elevation levels. This
process starts at the maximum surface elevation and continues until the
minimum surface elevation (with a decremental step of 6 = 0.1 m). For
the cell clones of the marked host cells 1 and 3, there is only one group
of connected pixels at all levels. Therefore, there are no sub-clones in
these cell clones. For the cell clone 1 in the marked host cell 2, the
number of disjoint groups of pixels is different as the surface elevations
decrease due to the presence of barriers in this cell clone; see Fig. 15 for
depiction.

For this simulation, three ranges of water surface elevations are con-
sidered in defining clones of the marked host cell 2. When the water
surface elevation is # > 0.5, cell clones are used for the system. In the
range of —0.5 < < 0.5 sub-clones a and b (see Fig. 16) are considered
instead of cell clone 1. For water surface elevations of n < —0.5, sub-
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clones a, ¢ and d represent the cell clone 1. In this simulation, the initial
condition is set to 0 m. Thus, for the first cycle of flooding, sub-clone b
is connected to sub-clone a through an overflow formula.

Three stations are marked by white circles in Fig. 14. The time series
of surface elevation at these locations from all the runs conducted are
plotted in Fig. 17a, b and c.

For Station 3 (see Fig. 17), the Level 0 subgrid (line in green) pre-
dicts wetting/drying in the small lake, which is not physically correct as
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Fig. 20. Wet/dry area for marked cell 1 at the maximum surface elevation. Blue
is wet area and red is dry area. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

it is not connected to the inlet. The original cell clone approach and the
sub-clone approach proposed yield identical results; both remove this ar-
tificial cross flow from the coarse grid calculations. Fig. 17c shows the
time series at Station 1, located in the middle of two barriers. The wet-
ting/drying occurs at elevations n > —0.4 m for the reference solution.
It can be observed that the original cell clone approach behaves identi-
cally to the Level O solution. The reason is that barriers are determined
at the maximum surface elevation in the original cell clone approach.
However, the barriers that appear in the lower elevation are part of the
continuous path of pixels in the cell clone. Thus, these barrier’s effects
cannot be captured by the original cell clone approach, and the artificial
cross flow still exists in the cell clone’s approach. (It is noted that due to
the static nature of the original approach, this approach would perma-
nently divide the flow at the maximum surface elevation.) By breaking
down the cell clone into sub-clones and connecting and disconnecting
the sub-clones, the artificial cross flow can be further removed, thus
yielding surface elevations similar to the reference solution.

Fig. 17 b shows the time series at Station 2 situated in the middle
of the largest lake. Because the elevation of the barrier is 0.5 m and
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Fig. 19. a) Solid black lines are the location of coarse grids. Three coarse cells are marked with blue stars. b) Computational domain with three selected contours of
bathymetric depth (contour lines: 2 m ; 0 m ; 2 m). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)



A. Begmohammadi, D. Wirasaet, Z. Silver et al.

_y(m)

x (m)
Fig. 21. Wet/dry area for marked cell 3. Blue is wet area and red is dry area.

(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

the initial condition of the water surface elevation is 0 m, the over-
flow formula is used to connect sub-clone c to sub-clone d (see Fig. 16).
Thus wetting/drying happens at the elevation of 0.5 m and sub-clones
are merged and split at this elevation. The wetting/drying state with
the sub-clone approach is similar to the high resolution run. The coarse
grid and static original cell clone runs predict wetting/drying occurs
at elevations less than (0.5 m), which is physically incorrect due to an
artificial cross flow.

From the results shown above, it can be concluded that the cell clone
technique removes the artificial cross flow in the small lakes. However,
due to its static nature, the approach cannot accurately capture the ef-
fects of two subgrid barriers inside the marked cell 2 as they are sub-
merged at the maximum surface elevation. To capture the effect of these
barriers, the sub-clone technique is applied to the computational do-
main. As a result, marked cell 2 is divided into sub-clones and these
sub-clones are merged and split at different surface elevations to cap-
ture wetting/drying similar to the high resolution.

4.4. Complex test: Buttermilk bay

In this section, a more realistic computational domain is consid-
ered to simulate flooding cycles in Buttermilk Bay, Massachusetts, USA
(41.760N, 70.620W) (see Fig. 18). The geometry of Buttermilk Bay in-
cludes two narrow channels and two bays, which make it challenging
to obtain accurate simulations using traditional techniques and a coarse
grid. The computational domain, which has a size of 3854 m x 3854 m,
is shown in the red box in Fig. 18. The driving force for this simulation
is a tidal-like elevation boundary (see Eq. (18)), which is imposed along
the south part of the red box in Fig. 18.

LIDAR data (in the universal transverse Mercator coordinates) with
1 m resolution is used to describe the bathymetry in all subgrid
calculations. The FD/FV subgrid solution based on Casulli’s method
(Casulli, 2009) with resolution Ax = Ay =4 m is used as our reference
solution. Kennedy et al. Kennedy et al. (2019) used this test problem to
evaluate the performance of the subgrid model with different closures.
Therein, they showed the accuracy of the subgrid model for different
grid sizes (Kennedy et al., 2019) and also connectivity issues when the
computational grids are very coarse.

In this study, we focus on a coarsest grid calculation of Ax = Ay =
256 m. At this resolution, the subgrid results suffer from the connectivity
issues we aim to resolve. Note that we did not consider cell clones and
isolated sub-clones with an active area of less than 10% of the coarse
grid. The computational grid and three cells with connectivity issues
(marked by a blue star symbol) are drawn in Fig. 19a. Fig. 20 shows
the wet/dry areas for the marked cell 1 at #,,,, (red is dry and blue is
wet). Two disjoint groups of pixels exist in this cell. The group on the
east side of the cell is not connected to the group on the west side due to
a barrier which is significantly smaller than the cell. This cell is cloned
two times based on a group of connected pixels, to restrict the artificial
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x (m)

(b)

Fig. 22. Wet/dry area for marked cell 2. Blue is wet area and red is dry area. a)
Wet/dry area at n = ny,,. b) Wet/dry area at n = 1 m. c¢) Wet/dry area at 7 =0
m. d) Wet/dry area at n = 0.98 m. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

cross flow from the west to the east part of the cell and vice versa (there
are no sub-clones for these cell clones).

Fig. 21 shows the wet/dry area at the maximum surface elevation
for marked cell 3. A close inspection reveals three disjoint groups of
connected pixels. Two of these groups intersect the west edge of the
cell and one of them intersects the south edge of the cell. These groups
are connected in the subgrid model without cloning. In the clone cell
approach, this cell is cloned three times, each of them consisting of a
connected path of pixels that restrain the artificial cross flow between
these disconnected wet areas (so there is no sub-clone for these cell
clones). Fig. 19 shows station 3 located in Queen Sewell pond. This area
has a slightly higher elevation than the two main bays and the barrier
in marked cell 3 prevents the cross flow to this area.

Fig. 19 shows station 2 located in the area between the Little Butter-
milk Bay and Queen Sewell pond that has a relatively higher elevation
than the two main bays but lower than Queen Sewell pond. However, it
may still be reached by high water elevations.

Marked cell 2 shown in Fig. 19 covers the area between the Little
Buttermilk Bay and Queen Sewell pond.

Fig. 22 shows marked cell 2 as well as wet/dry areas at various water
level elevations. At the surface elevation of #,,,,, there is one group of
connected pixels at the southwest of the cell and one group of connected
pixels at the northeast of the cell, connected by a narrow channel. At the
surface elevation of 7 = 1 m, the wet proportion of the channel shrinks
and two groups of connected pixels can be discerned. As the surface
elevation reduces further to # = 0 m, the group of connected pixels in
the northeastern part becomes dry. At Fig. 22d, the wet/dry areas are
shown at # = 0.98 m. This is the point at which the wet areas separate
into two disjoint groups. When the surface elevation is 7 > 0.98, wa-
ter can connect between the southwest to the northeast and vice versa.
Thus, 7 =0.98 m is a connectivity surface elevation. When the water
surface elevation is less than # = 0.98 m, this cell (Fig. 22d) splits into
two sub-clones. When the water surface elevation of this cell reaches
the elevation of # = 0.98 m in the first flooding cycle, an overflow for-
mula is used to connect the source sub-clone and the receiver sub-clone.
Later, the source sub-clone and the receiver sub-clone merge based on
the connectivity surface elevation.

Fig. 23 shows the surface elevation of the wet area for all consid-
ered models during the rising tide period (+ = 0.792,0.872,1.000 day).
Fig. 23a-c show the results of the level 0 subgrid solution, level 0 sub-
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Fig. 23. Water surface elevation solution at various time levels from: (a) Level 0 subgrid model with Ax = Ay = 256m; (b) Level 0 subgrid model Ax = Ay = 256m

with cell clone and sub-clone; (c) high resolution calcuation Ax = Ay = 4m.

grid with sub-clones in the computational domain, the reference solu-
tion computed on 4 mx4 m grid, respectively. At t = 1 day, there are
additional wet areas in Queen Sewell Pond (see red box in Fig. 23a at
t =1 day) and the west part of main bay (see blue box in Fig. 23a at
t = 1 day) in the level 0 subgrid solution in comparison to the reference
solution. These additional wet areas result from blocks in the coarse grid
are treated as connected areas. This artificial flow can be removed by
cloning cell sufficiently to resolve the effect of barriers that are not cap-
tured by the subgrid model. It can be clearly observed from Fig. 23b
that the subgrid solution with the sub-clone treatment is free of the ar-
tificial wet areas seen in Fig. 23a when the subgrid alone is used. The
sub-clone subgrid solution indeed is in good agreement with the refer-
ence solution. In addition, a small wet area can be seen in Fig. 23c at
the time level 1 = 0.792 and 0.872 day (see North west of red boxes).
At these time levels, this area cannot be seen in the coarse grid simula-
tion in Fig. 23 c. This wet area is captured due to merging sub-clones
(marked cell 2) at the surface elevation of 0.98 m using the overflow
formula. By comparing red boxes and blue boxes of Fig. 23b-c at three
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time levels, it can be seen that the prediction of surface elevation in the
subgrid calculation the cloning technique in the computational domain
of the coarse grid matches quite well with the high resolution solution
in terms of capturing wetting/drying areas.

In Fig. 24a, the time series of surface elevation is plotted at Station
3 for the reference calculation and subgrid calculations. When the cell
clone approach is applied, the time series of surface elevation is identical
to the high resolution. Fig. 24b shows the time series of surface elevation
at Station 1. Note that this station is in the west part of marked cell 2,
i.e. in front of a small barrier (see Fig. 19). Since marked cell 2 splits into
two cell clones, the additional water flow is not permitted to go through
the barrier. As a result, the effect of the barrier which is smaller than
the computational grid can be captured in the subgrid model.

The time series of surface elevation for station 2 is depicted in
Fig. 24c. Note that this station is located within marked cell 2 (see
Fig. 19). As illustrated in Fig. 22, disconnected groups of wet areas di-
vided by subgrid blocking structured emerge at the height of = 0.98 m
(see Fig. 22). If water elevation is less than the connectivity surface
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Fig. 24. a) Time series of surface elevation at station 3. b) Time series of surface elevation at station 1. ¢) Time series of surface elevation at station 2. In the legend,
cs shows the sub-clone implementation. Red line is the reference solution (FD/FV). Green line is the level O closure subgrid model. Black dashed line is the level 0

closure subgrid model with the sub-clone implementation.

elevation, this cell splits into two sub-clones. When the water surface
elevation reaches this height, only one group of connected pixels is con-
sidered (see Fig. 22 a). However, there is an exception during the first
tidal cycle due to a relatively significant difference of surface elevations
between the source clone and the receiver clone, which prevents one cell
with a single value of surface elevation. To reduce the large difference,
the overflow formula is used to connect the source clone to the receiver
clone until the surface elevation of the receiving cell clone reaches the
connectivity surface elevation (17, = 0.98 m). Afterward, when the wa-
ter surface elevation reduces to a value lower than 5, = 0.98 m, two
sub-clones with two different surface elevations are defined. Otherwise
the marked cell with one surface elevation, which is equal to the aver-
age surface elevation of receiving clone and host clone is considered.
Fig. 24c shows that wetting/drying similar to the reference solution can
be captured with a coarse grid solution with the inclusion of cell and
edge clones.

5. Discussion and conclusions

Using subgrid corrections determined by an averaging process pro-
vides increased accuracy in complex shore regions when applying on
lower-resolution simulations (Kennedy et al., 2019). However, using an
excessively coarse grid can lead to artificial cross-flows between dis-
connected areas due to barriers that are smaller than the grid size. Al-
though the cell clone approach presented by Casulli (2019) removed
the artificial cross flow at the maximum surface elevation, the artifi-
cial cross flows may exist at the lower surface elevations as a result of
the submerged barriers. In this work, we extend the cell clone approach
(Casulli, 2019) by breaking the cell clone down into sub-clones to re-
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move cross flow when barriers within the coarse grids are submerged.
Splitting and merging sub-clones allows for a more flexible implemen-
tation of subgrid models to represent the effect of smaller scale barriers
that are submerged and emerged at different water surface elevations.
Furthermore, it naturally extends Cartesian grids to restore the high-
resolution bathymetric data without sampling or interpolating. This al-
gorithm, in principle is applicable to any flow region with a complex
geometry, that may include urban areas and marshland to produce ac-
curate simulations of inundations during flood events.

Our proposed algorithm is implemented in an existing subgrid model
(Kennedy et al., 2019) and tested through a variety of tests, ranging
from simple channel block systems to a sophisticated natural system,
Buttermilk Bay. The model results show that a coarse-grid model, when
implementing our approach, has the ability to capture wetting/drying
behaviors similar to those obtained from high resolution simulations,
without requiring further mesh refinement.

As explained in Section 3.3, we solve a reduced system of nonlin-
ear algebraic equations (Eq. 16) for the surface elevations, which is
mildly nonlinear, using the Newton-Raphson method. Solving the sys-
tem of equations (Eq. 16) requires us to compute the volume and the
wet area of coarse cells for each surface elevation. Here, the volume and
the wet area of the cells are calculated directly from the high-resolution
bathymetric data. For the large grid sizes, these calculations can be very
expensive computationally due to the large amount of high resolution
bathymetric data inside a coarse grid. To reduce the computational cost,
a pre-storage lookup table can be employed to store the volume and the
wet area of the cells as a function of surface elevations. Lookup tables
can be built once and for all cells as a pre-processing step. Currently, we
have not implemented the lookup tables for the cell clone and sub-clone
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approach. However, for the subgrid model, we experienced 20% to 30%
higher computing time than the standard calculations of the same grid
resolutions.

All of the presented test cases were conducted on relatively small
Cartesian grids, using a custom-written code. To consider more ex-
treme events, such as hurricane-induced storm surge, much larger grids
and parallelization of the algorithm will be required. In principle, the
method introduced here can be applied to curvilinear polar, elliptical,
and hyperbolic telescoping mesh grids as well as any irregular mesh
grids. Future work will focus on incorporating this method into widely-
used and available models that have a more significant impact on the
field.
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Appendix A. Numerical implementation

A Fortran-based computer code originally written for an implemen-
tation of various forms of subgrid models (and variants of discretiza-
tion schemes) presented in Kennedy et al. (2019) is modified to handle
the clone/sub-clone approach. In terms of its solution algorithm, the
two main tasks of the code involve: (i) computing subgrid-related and
other necessary quantities, e.g. volume, wet area/fraction, wet cross-
section, grid-averaged total water depth, wet/dry status of edges and
cells from a given surface elevation solution; and (ii) solving the dis-
cretized form of the momentum Egs. (13)-(14) for the edge-centered u
and v velocity components and solving the discretized form of the mass
Eq. (16) for a solution vector of cell-centered surface elevation #"*!. The
former task is accomplished through the use of Fortran objects of de-
rived data type encapsulating data associated with subgrid bathymetry
(to be described in brief below) and subroutines/functions computing
subgrid-related quantities requested from these objects and a given sur-
face solution vector. For the latter task, we briefly recall below solution
procedures in the original code as the clone extends such procedures.
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In the original code, for a grid of N, x N, cells, the latter task uses
one-dimensional arrays denoted as

u =" 1"

n — r,,n 1T
i.jli=1,..., NX+],j:],.,.,N}.’ v= [U' ]

i,jli=1,..., Ny j=1,....N+1°

4 (A.1)
to store the edge-perpendicular u-, v- velocities at the edge-centered
vertical and horizontal edges and surface elevation 5 at the cell cen-
ter, respectively. Stemming from the use of Fortran, ordering of entries
in these 1D arrays is done by mapping an index pair {(i,j)} to a sin-
gle index in a column major manner. Once the surface elevation 7!
is known, solving the discretized form of the momentum equations is
done in a node-by-node fashion; this step is computationally efficient
as (13)-(14) are computed only at velocity nodes associated with wet
edges, while the value at nodes associated with dry edges is set to zero
(i.e. no normal flow is allowed). For the mass equation, the reduced sys-
tem of nonlinear algebraic Eq. (16) is solved by the Newton-Raphson
method, which requires solution of a linear system of equations asso-
ciated with the Jacobian of the system J = P + T, where P = 22 js 5

P
diagonal matrix whose entries are the values of wet area of cells?. Such
a linear system is solved by the bi-conjugate gradient stabilized solver
(Saad, 1994) where the matrix T is stored in an ELLpack-like format
mainly for an ease of updating its non-zeros entries especially when the
wet-dry pattern changes. Non-zero entries in the row associated with
the index pair (i, j) of the matrix T are those associated with the surface
elevation of the cell (i, j) and its wet neighbor cells; for the full gird (no
cell clone), T has at most five nonzero entries in each row. The dimen-
sion of the reduced system of equations is N,, x N, where N, is the
number of cells having at least one wet edge; for a problem with wet-
ting/drying, N, is time dependent. To keep the code simple, instead of
strictly dealing with the N, X N, system, whose dimension may change
with time, we consider an equivalent (N, + 1) X (N, + 1) system of equa-
tions in which the unknown solution vector includes all the cell-centered
surface elevation. In this system, an equation associated with a cell hav-
ing no wet edge (inactive cell) is replaced by cnf;l =cn;; (i.e.no change
in the value of surface elevation from the previous time step) where ¢
is a constant used merely to obtain the Jacobin matrix with a properly
scaled condition number. Although there is computational expense as-
sociated with the inactive cells in this simple approach, such expense is
not substantial especially when a coarse grid is considered in a calcu-
lation. To accommodate the cell clone and sub-clone approach, which
introduce additional DOFs in each host cell and host edge, we use ob-
jects that pre-store information of clones and all their sub-clones within
the range of i, to 7y (See Section (2.3 for the procedure to identify
sub-clones.) All clones and sub-clones data (in the description below,
‘clones’ refer to both clones and sub-clone) of a host cell are stored in a
derived data type with, among several others, the following data fields:

table_type - table type (raster/lookup table)

- total number of clones
(clones+sub-clones)

nclone

tabdat(1:nclone)%b(:,:) - table of bathymetric data (or

lookup table)

tabdat (1:nclone)%b_dim(1:2) - dimension of table tabdat (i) %b

- min, max, avg of bathymetric
tabdat (1:nlcone)’%bmin_max (1:3)depth of clones

clone_label(1:nclone,1:3)

- clone labels (see Section 2.3)

- element indices of clones in a
surface elevation

eta_map(1l:nclone)

solution 1D array

Note that, in the above description, a%b indicates that b is a mem-
ber of a derived data a. These data are designed to accommodate two
approaches of computing subgrid-related quantities: a direct approach
through raster data of a cell (tabdat (i) %D stores portion of DEM
pixel in the clone (i), and an approach using lookup tables, which store
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the subgrid related quantities at different finite levels of surface eleva-
tion in a table before hand for efficiency. In the look-up table approach,
the members of tabdat (i) store the content of lookup tables; spe-
cially, b_dim (1) is the number of surface elevation levels, b_dim(2)
is the number of pre-stored subgrid qualities, b(1:b_dim(1),j)
stores the j subgrid-related quantity at different levels of surface eleva-
tion from bmin_max (1) tobmin_max (2) with a uniform incremen-
tal step of (bmin_max(2) - bmin_max(1))/b_dim(1). Note
that the direct approach is simple and determines the subgrid quantities
exactly for a given surface elevation value; however, it can be computa-
tionally expensive with a cost proportional to the number of pixels. The
lookup table is very efficient as it requires much fewer operations, i.e.
one operation to locate the interval to which the given surface elevation
belongs and a few operations for interpolation. This approach requires
pre-computing every quantity needed and in general does not yield an
exact value (which has a consequence in solving (16); from our expe-
rience, computing the wet surface area P = Y@ must be done numer-

on
ically using a finite difference approximation to achieve convergence

in the Newton-Raphson method). Note that eta_map storing element
indices of clones in the solution vector of surface elevation is used for
fetching relevant values to clones of the host cell from a given surface
elevation vector.

In solving the discretized form, the solution vectors for the surface
elevations are enlarged so that their dimensions are equal to the number
of all clones and sub-clones of all N, X N, host cells. The indexing order
in the enlarged one-dimensional array is done in a cell by cell order, i.e.
surface elevation solutions of all clones associated with the (i, /)™ host
cell followed by those of the (i + 1, /) host cell. In a short notation,

_ T
N = [ﬁ:’i,j)]iﬂ,...,Nx+l,j=],..., (A2)

where 7’ ., = [1"|,s:)]7 denotes a surface elevation solution vector of
@) s

all clones (clones and sub-clones) in the (i, j) host cell ((r, s, t) correspond
to the clone number, sub-clone level, and sub-clone number as described
in Section (2.3). Enlargement of the velocity solution vectors are done
in a similar way.

Note that active clones in the computational domain can change due
to merging and splitting sub-clones. As done in the full grid case when
solving (16, we solve the systems written for all surface elevation DOFs
and appropriately modify equations associated with the inactive clones
and sub-clones.

The algorithm of computation is summarized as follows:

1: forn=1to N, do
2:  For all active clone edges at ": Compute and store the RHS of
(13) and (14)

1
F  «——|H" u" — AtF" G .1«

i+=.j D DR 1. ij+ =

3 HH%J 43, i+5. i+3. Lits
1 [ n o — AtG" ]
H* T )
’J+% t,j+2 l,]+2 1,/+2

3: Baseon F. 1 ,F 1 ,{H"  },{H" | },setup thesparse matrix
Had? i g ij-%

T" and the RHS vector b
4. Solve (16) for n™*! using the Newton Raphson method

Update velocities by solving Equation (13) and (14) for (u™!

A
L+7,j

+1
and {v"" |}
Ljts

6:  Check the sub-clones surface elevations and apply a weir formula
if necessary
Update the set of active cell clones based on 5"*!
Update active edge clones based on the new set of active cell
clones.

9: end for
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