Presentation: NSF Workshop 2018

News: Faster Storm Surge Forecasting

2018/06/12 – DHS Coastal Resilience Center of Excellence
NC State project aims to create faster storm surge forecasting

ncsg

Planning for a hurricane is a complicated process involving many stakeholders and varying degrees of uncertainty. Accurate predictions of storm surge and wave heights are vital to decision-making before, during and after the storm. Creating these predictions through modeling software can be expensive and time-consuming. When dealing with hurricanes, time is critical for emergency managers and other officials.

Helping decision-makers to save valuable prediction time is CRC Principal Investigator Dr. Casey Dietrich of North Carolina State University (NCSU). His project, “Improving the Efficiency of Wave and Surge Models via Adaptive Mesh Resolution,” involves collaboration with co-PI Dr. Clint Dawson at the University of Texas at Austin. Their project focuses on speeding up a widely used prediction tool, ADCIRC. His work with North Carolina Emergency Management during Hurricane Matthew in 2016, and his contributions to developing future disaster resilience specialists, have helped make significant contributions to disaster preparation and recovery.

News: Improving Coastal Flooding Predictions

2018/05/14 – NC Sea Grant Coastwatch Currents
Hurricane Hindsight: Researchers Work to Improve Coastal Flooding Predictions

ncsg

Computer models can make surge predictions based on limited information about storm characteristics such as track, size, maximum wind speed and central pressure. Those parameters are used to predict the surface pressures and wind speeds throughout a coastal region. Those atmospheric conditions are then used to predict how the ocean will respond by generating large waves and surge, and by flooding into low-lying areas.

Given all the variables involved, there’s a lot of room for error in storm wind and surge prediction modeling.

For our study, we wanted to know how forecasting errors affect subsequent coastal flooding predictions. To that end, we needed to answer a couple of questions: First, as a storm moves closer to the coast, how accurate are forecasts of certain storm parameters like track, size, and maximum wind speed? Second, how do those forecasts affect predictions of wind speeds and storm surge?

Conference: ADCIRC 2018

R Cyriac, JC Dietrich, A Fathi, CN Dawson, KM Dresback, CA Blain, M Bilskie, SC Hagen, H Graber. “Wind Effects on the Choctawhatchee River Plume at Destin Inlet, Florida.” ADCIRC Users Group Meeting, NOAA Center for Weather and Climate Prediction, College Park, Maryland, 13 April 2018.

A Thomas, JC Dietrich, JG Fleming, BO Blanton, T Asher, RA Luettich. “High-Resolution Modeling of Surge during Hurricane Matthew.” ADCIRC Users Group Meeting, NOAA Center for Weather and Climate Prediction, College Park, Maryland, 13 April 2018.

N Tull, JC Dietrich, TE Langan, H Mitasova, BO Blanton, JG Fleming, RA Luettich. “Improving Accuracy of Real-Time Storm Surge Inundation Predictions.” ADCIRC Users Group Meeting, NOAA Center for Weather and Climate Prediction, College Park, Maryland, 13 April 2018.

Continue reading

Nelson Tull and Ajimon Thomas win Student Poster Awards

MS student Nelson Tull won First Place in the Student Poster Competition at the EWC Research Symposium. Nelson described his research to enhance resolution of coastal flooding forecasts for decision support.

PhD student Ajimon Thomas won Honorable Mention. Ajimon described his research to quantify interactions between tides and storm surge along the U.S. southeast coast during Hurricane Matthew.

This event is an annual showcase for research in our Environmental, Water Resources, and Coastal (EWC) engineering group, as well as a recruiting event for potential students. Awardees are selected by judges from other academic departments, government agencies, and consulting firms. Students presented their posters to judges and visitors during a poster session, and then finalists presented orally to the entire audience.

Congratulations to Nelson and Ajimon!

Nelson Tull shares his poster with judges at the 2018 EWC Research Symposium.

Posters: EWC Research Symposium 2018

N Tull, JC Dietrich, TE Langan, H Mitasova, BO Blanton, JG Fleming, RA Luettich. “Improving Accuracy of Real-Time Storm Surge Inundation Predictions.” Environmental, Water Resources, and Coastal Engineering Research Symposium, North Carolina State University, 2 March 2018.

Improving Accuracy of Real-Time Storm Surge Inundation Predictions.

Continue reading

Sensitivity of Storm Surge Predictions to Atmospheric Forcing during Hurricane Isaac

Storm surge and overland flooding can be predicted with computational models at high levels of resolution. To improve efficiency in forecasting applications, surge models often use atmospheric forcing from parametric vortex models, which represent the surface pressures and wind fields with a few storm parameters. The future of storm surge prediction could involve real-time coupling of surge and full-physics atmospheric models; thus, their accuracies must be understood in a real hurricane scenario. The authors compare predictions from a parametric vortex model (using forecast tracks from the National Hurricane Center) and a full-physics coupled atmosphere-wave-ocean model during Hurricane Isaac (2012). The predictions are then applied within a tightly coupled, wave and surge modeling system describing the northern Gulf of Mexico and the floodplains of southwest Louisiana. It is shown that, in a hindcast scenario, a parametric vortex model can outperform a data-assimilated wind product, and given reasonable forecast advisories, a parametric vortex model gives reasonable surge forecasts. However, forecasts using a full-physics coupled model outperformed the forecast advisories and improved surge forecasts. Both approaches are valuable for forecasting the coastal impacts associated with tropical cyclones

JC Dietrich, A Muhammad, M Curcic, A Fathi, CN Dawson, SS Chen, RA Luettich (2018). “Sensitivity of Storm Surge Predictions to Atmospheric Forcing during Hurricane Isaac.Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(1), DOI: 10.1061/(ASCE)WW.1943-5460.0000419