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Abstract
The inland propagation of storm surge caused by tropical cyclones depends on large and 
small waterways to connect the open ocean to inland bays, estuaries, and floodplains. 
Numerical models for storm surge require these waterways and their surrounding topogra-
phy to be resolved sufficiently, which can require millions of computational cells for flood-
ing simulations on a large (ocean scale) computational domain, leading to higher demands 
for computational resources and longer wall-clock times for simulations. Alternatively, the 
governing shallow water equations can be modified to introduce subgrid corrections that 
allow coarser and cheaper simulations with comparable accuracy. In this study, subgrid 
corrections are extended for the first time to simulations at the ocean scale. Higher-level 
corrections are included for bottom friction and advection, and look-up tables are opti-
mized for large model domains. Via simulations of tides, storm surge, and coastal flooding 
due to Hurricane Matthew in 2016, the improvements in water level prediction accuracy 
due to subgrid corrections are evaluated at 218 observation locations throughout 1500 km 
of coast along the South Atlantic Bight. The accuracy of the subgrid model with relatively 
coarse spatial resolution ( E

RMS
= 0.41 m ) is better than that of a conventional model with 

relatively fine spatial resolution ( E
RMS

= 0.67 m ). By running on the coarsened subgrid 
model, we improved the accuracy over efficiency curve for the model, and as a result, the 
computational expense of the simulation was decreased by a factor of 13.
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1 Introduction

Tropical cyclones and other coastal storms can cause storm surge, which is the rise in water 
levels above the normal astronomical tides (Harris 1963). Storm surge can damage infra-
structure along the coast and far inland (Lin et al. 2010a; Tomiczek et al. 2014; Needham 
et  al. 2015). The extent to which storm surge can propagate overland depends on topo-
graphic and bathymetric controls, including natural and built channels and barriers, as well 
as varying friction associated with land cover (Stark et  al. 2015; Herdman et  al. 2018). 
Storm surge and flooding can be predicted with computational models generally based on 
the numerical solution of 2D shallow water equations (Westerink et  al. 2008; Lin et  al. 
2010b; Leijnse et al. 2021). The computational model can generate detailed maps of inun-
dation levels and extents, which are used to support decision making for coastal communi-
ties (Xian et al. 2015; Ramirez et al. 2016; Rucker et al. 2021). Therefore, during a storm 
event, it is essential that model predictions are the best possible representation of flooding 
in coastal regions.

Storm surge models are applied typically along large stretches of coastline, to predict 
water levels, currents, and flooding extents in the full region affected by the storm. These 
models represent the coastal environment with numerical grids (or meshes) with varying 
spatial resolution—often finer near the coast, where the bathymetry/topography varies sig-
nificantly and predictive accuracy is critical. The Sea, Land, and Overland Surges from 
Hurricanes (SLOSH) model (Jelesnianski et al. 1992) resolves length scales on the order 
of hundreds of meters and includes limited topographical complexity (Zhang et al. 2008). 
The ADvanced CIRCulation (ADCIRC) model (Luettich et al. 1992; Westerink et al. 2008) 
uses finite-element meshes with small length scales on the order of tens of meters to rep-
resent hydraulic and topographic information with high fidelity (Bunya et al. 2010; Hope 
et al. 2013). Typically, the inclusion of more geospatial information allows for more accu-
rate flooding predictions, because the model can represent flows at very small scales (Bil-
skie and Hagen 2013; Kerr et al. 2013). However, such inclusion can lead to a model with 
a large number of grid cells that is too computationally expensive to obtain results in a 
timely manner. In addition, due to technologies like light detection and ranging (LiDAR), 
there will be a gap between any model and the best-available representation of the coastal 
environment (e.g., digital elevation models (DEMs) with spatial resolutions less than 1 m) 
(Danielson et  al. 2018). Traditionally, trade-offs between spatial accuracy and computa-
tional efficiency must be considered when developing a model.

Subgrid corrections can bridge the gap between model and finer scales. The governing 
shallow water equations are averaged (Defina 2000) to introduce closure terms, which can 
include higher-resolution data to correct flow variables (flow accelerations, water levels, 
and current velocities) at the grid scale. Bates and Hervouet (1999) used subgrid correc-
tions to improve predictions of the moving wet/dry boundary. Defina (2000) applied cor-
rections to the convective accelerations to incorporate small-scale changes in flow due to 
ground irregularities. Volp et al. (2013) corrected bottom friction to account for variable 
bathymetry and roughness by assuming uniform flow direction and constant friction slope. 
These and other studies aim to attain highly accurate results on grids with length scales 
that are several orders of magnitude larger than those of the topographic datasets (Casulli 
and Stelling 2011).

Subgrid corrections have only recently been used for storm surge predictions. Sehili 
et al. (2014) incorporated winds and storm surge into a regional Unstructured Tidal, Resid-
ual, Intertidal Mudflat  (UnTRIM2) subgrid model of the North Sea. Daily meteorological 
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predictions were used to force an operational subgrid model of the Elbe Estuary to pre-
dict water levels, velocities, and salinity transport. They achieved accurate predictions with 
the subgrid model while decreasing computational expense by a factor of 20. Wang et al. 
(2014) used the ocean-scale Semi-implicit Eulerian Lagrangian Finite Element (SELFE) 
hurricane storm surge model to provide water levels to  UnTRIM2 to predict water levels 
in New York City during Hurricane Sandy in 2012. High-resolution elevation data were 
used to predict street-scale water levels comparable to observations taken during the storm. 
Woodruff et al. (2021) added subgrid corrections into ADCIRC with real hurricane winds 
and storm surge forcing. Using a relatively small domain focused near the landfall location 
of Hurricane Rita in 2005, which caused extensive flooding in southwest Louisiana, the 
authors obtained accurate results while running ADCIRC with subgrid corrections on a 
coarse computational mesh that decreased run time by a factor of 32 when compared to a 
high-resolution counterpart that had nearly 40 times more grid cells.

There are remaining challenges to the implementation of subgrid corrections for storm 
surge simulations on large domains. One challenge is to account for small-scale variations 
in bottom roughness and advection, which can significantly affect predicted water depths 
during a storm (Rego and Li 2010). Bottom friction is the primary contributor to storm 
surge attenuation as it flows overland (Resio and Westerink 2008), and small uncertainties 
in bottom friction can lead to large errors in predicted surge elevations (Akbar et al. 2017). 
The averaging of topographic and bathymetric features can lead to over-estimations of bot-
tom friction (Defina 2000; Volp et al. 2013; Kennedy et al. 2019), which may inhibit prop-
agation. Advection, due to storm surge interaction with the astronomical tides and shelf 
geometry, can affect predicted water levels by as much as 1 m in some locations (Thomas 
et al. 2019). However, when averaging to larger grid-scale areas, subgrid models may not 
represent small-scale variations in nonlinear advection in complex coastal environments 
(Defina 2000; Kennedy et al. 2019).

Another challenge is that most previous subgrid studies have focused on demonstrat-
ing the performance of the approach on small regional domains (Roig 1994; Bates and 
Hervouet 1999; Defina 2000; Wu et al. 2016; Kennedy et al. 2019) with areas less than 500 
 km2. However, for storm surge applications, small domains can lead to significant under-
predictions and undue boundary influences (Blain et al. 1994; Pringle et al. 2018). Larger 
domains are necessary to represent the storm’s effects in open water, its interactions with 
the complex coastal environment, and the development of surge forerunners and shelf edge 
waves (Westerink et al. 1994). Because of their relatively high number of grid cells, large, 
ocean-scale hydrodynamic models require high-performance computing (HPC) systems 
and parallelized coding practices to reduce computing times (Tanaka et al. 2011; Roberts 
et al. 2021).

The ability of subgrid models to be parallelized and scaled to large domains, the avail-
ability of high-resolution data, and data processing limitations have been contributing fac-
tors to why previous research studies have not applied subgrid models to larger domains. In 
this study, we investigate the extension of subgrid models for storm surge on ocean-scale 
domains. It is hypothesized that accurate predictions of storm surge at the smallest coastal 
scales can be obtained if: (1) higher-level subgrid corrections to bottom friction and advec-
tion are implemented into a widely used storm surge model, (2) the extensive datasets needed 
to describe subgrid information can be efficiently processed, and (3) storm surge predictions 
are corrected for flows in complex coastal environments. We extend subgrid corrections in 
ADCIRC and comprehensively evaluate their performance compared to conventional method-
ologies. First, we introduce higher-level corrections to advection and bottom friction and dem-
onstrate their benefits for controlled flow on a synthetic domain. Then, we extend to a domain 
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of the Western North Atlantic Ocean, to simulate the storm surge generated by Matthew in 
2016. This ocean-scale model will use hundreds of DEMs and land cover datasets to represent 
coastal regions from south Florida to the North Carolina Outer Banks. Finally, by comparing 
with observations from the storm, we demonstrate improvements in the subgrid model’s abil-
ity to predict water levels over a range of spatial scales along the coast.

2  Methods

2.1  Extension of subgrid corrections in ADCIRC

2.1.1  Closures for bottom friction and advection

ADCIRC is a coastal circulation model with applications in predictions of tides (Luettich et al. 
1992; Westerink et  al. 1992; Blain et  al. 1998), density-driven circulation (Dresback et  al. 
2010; Blain et al. 2012; Cyriac et al. 2020), and storm surge (Westerink et al. 2008; Bunya 
et al. 2010; Dietrich et al. 2010; Weaver and Luettich 2010; Sebastian et al. 2014). ADCIRC 
uses the continuous-Galerkin, finite-element method to solve shallow water equations that 
consist of the depth-integrated mass equation reformulated into the Generalized Wave Con-
tinuity Equation (GWCE) and conservative momentum equations to predict water levels and 
current velocities at vertices in an unstructured mesh. Using volume-averaging techniques 
from Whitacker (1999), these equations were averaged to obtain the subgrid system for locally 
averaged flow variables. Such a system (see the full detailed derivation in Woodruff et  al. 
2021) consists of the averaged momentum equations:

and:

and the averaged GWCE:

∂〈UH〉G
∂t

+ gCζ〈H〉G
∂〈ζ〉W
∂x

= −∂CUU 〈U〉〈UH〉G
∂x

− ∂CV U 〈V 〉〈UH〉G
∂y

− f〈V H〉G − g〈H〉G
∂PA

∂x
+ φ

〈
τsx
ρ0

〉

W

− CM,f 〈U〉〈UH〉G
〈H〉W

+
∂

∂x
Eh

∂〈UH〉G
∂x

+
∂

∂y
Eh

∂〈UH〉G
∂y

,

(1)

∂〈V H〉G
∂t

+ gCζ〈H〉G
∂〈ζ〉W
∂y

= −∂CUV 〈U〉〈V H〉G
∂x

− ∂CV V 〈V 〉〈V H〉G
∂y

− f〈UH〉G − g〈H〉G
∂PA

∂y
+ φ

〈
τsy
ρ0

〉

W

− CM,f 〈U〉〈V H〉G
〈H〉W

+
∂

∂x
Eh

∂〈V H〉G
∂x

+
∂

∂y
Eh

∂〈V H〉G
∂y

,

(2)



Natural Hazards 

1 3

where

In the above equations, ⟨s⟩G and ⟨s⟩W denotes the grid-average and wet-average, respec-
tively, of the flow variables s ( s = H,UH,VH, � ), and �(⟨�⟩W ) is the wet area fraction, U 
and V are the water velocities in the x and y directions, H = � + h is the water depth, � is 
the water surface elevation, h is the bathymetric depth, f is the Coriolis parameter, g is the 
acceleration due to gravity, PA is the atmospheric pressure, �sx and �sy are surface stresses, 
Eh is the lateral stress coefficient, �0 is a positive (spatially varying) parameter weighting 
the primitive continuity equation. The unknown solution variables to be computed are 
the surface elevation ⟨�⟩W and the averaged x- and y- directed flux per unit width ⟨UH⟩G , 
⟨VH⟩G . The grid-averaged water depth ⟨H⟩G , wet-averaged water depth ⟨H⟩W , and wet frac-
tion � are found using look-up tables (as elaborated below) for a given surface elevation 
⟨�⟩W . The grid-scale velocity ⟨U⟩ corresponds to the ratio ⟨UH⟩G∕⟨H⟩G.

Several closure coefficients are introduced by the averaging and are indicated in red font 
in Eqs. 1, 2, and 3. These closure coefficients include: the convective acceleration coefficients 
CUU , CVU , CUV , and CVV ; the friction coefficient CM,f  ; and the water surface gradient coef-
ficient C� . To only apply corrections to the wetting and drying (denoted a ‘Level 0’ correction 
by Kennedy et al. 2019), these closure terms would be represented as the following:

where n is a Manning’s roughness coefficient, assigned typically from land-use/landcover 
data sets.

In this work, we retain the water surface gradient correction as C� = 1 , but we extend cor-
rections for the advection and bottom friction coefficients (denoted as ‘Level 1’ corrections by 
Kennedy et al. 2019). For the bottom friction, Volp et al. (2013) created a weighted friction 
coefficient by applying the conveyance method, which was generalized for a two-dimensional 
setting by assuming uniform flow direction and friction slope at the subgrid level across a 
coarsened computational cell. This flow assumption results in the correction factor adjusting 
the conventional friction coefficient as follows (Kennedy et al. 2019):

where the dimensionless friction coefficient Cf  is calculated using Manning’s equation:
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(3)

⟨J̃x⟩G = RHS of (1) + 𝜏0⟨UH⟩G and ⟨J̃y⟩G = RHS of (2) + 𝜏0⟨VH⟩G.
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In addition, the above mentioned canonical flow assumption at the subgrid level leads to 
the following advection correction coefficients (Defina 2000; Kennedy et al. 2019):

Note that the equations (5) and (7) depend only on subgrid water depth and bottom rough-
ness. Therefore, these coefficients can be pre-computed for a range of surface elevation val-
ues and stored as look-up tables. With the look-up table, evaluating these coefficients can 
be done efficiently and is independent of the subgrid resolution, as the procedure reduces 
to retrieving relevant entries in the look-up tables and requires only O(1) operations.

2.1.2  Wetting and drying

The conventional ADCIRC requires extensive logic to determine whether an element or 
vertex is considered ‘wet’ (included in the computations) or ‘dry’ (ignored) (Dietrich et al. 
2004; Medeiros and Hagen 2013). This algorithm requires elements and vertices to be 
either fully wet or fully dry (i.e., to be wet, a triangular element must have nonzero water 
depths at all three of its vertices). Logic decisions are based on local water depths, water 
surface gradients, and bottom friction. ADCIRC’s wet/dry algorithm has been applied for 
accurate predictions of flooding in many overland regions (e.g., Westerink et  al. 2008; 
Hope et al. 2013; Thomas et al. 2019). However, this approach can lead to inaccuracies in 
the location of the wet/dry interface (Rucker et al. 2021), which can be represented only at 
the grid scale, and to numerical instabilities, partly due to the addition/subtraction of entire 
elements to the local conservation of mass and momentum.

In subgrid ADCIRC, an alternative wetting and drying algorithm was devised. The 
algorithm is based solely on the local wet area fraction (Woodruff et al. 2021); more spe-
cifically, mesh quantities (elements and vertices) are considered wet if they satisfy the one 
condition:

where �min is a minimum wet area fraction set by the user. Typical values for �min are in 
the range of 0.01 to 0.1. This setting allows for partially wet elements and vertices, thus 
smoothing the transition between the active and inactive parts of the domain.

In previous subgrid studies with a similar wetting criterion (Defina 2000; Casulli and 
Stelling 2011; Wang et  al. 2014; Kennedy et  al. 2019; Woodruff et  al. 2021), one chal-
lenge has been the inability of the subgrid model to block flow between hydraulically dis-
connected regions. This is a result of assuming that flow variables are constant over their 
respective regions (Casulli 2019). Therefore, where a coarsened computational element 
spans a raised feature (e.g., dune, levee, or barrier island) between two water bodies, the 
coarsened subgrid model would not be able to “see” that these two water bodies are not 
hydraulically connected. One solution is to incorporate cell clones that predetermine con-
nectivity between computational cells (Casulli 2019; Begmohammadi et  al. 2021); how-
ever, this solution cannot be implemented readily in ADCIRC because of its vertex-based 
numerical scheme. Cell clones rely on pre-computing flow across cell edges, instead of 
along them as is done in ADCIRC. Thus, the addition of cell clones to ADCIRC is left for 
future work.

(7)CUU = CVU = CUV = CVV =
1

⟨H⟩W

�
H2

Cf

�

W

R2
v
.

(8)𝜙 > 𝜙min
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Instead, to prevent flows across small barriers, we allow the wetting criterion �min to 
vary spatially. In most of the domain, it retains its typically small values, thus allowing 
computations in areas that are barely wet. However, in areas that include a dune crest, 
levee, or barrier island (Fig.  1), the criterion can be set to higher values, thus prevent-
ing flows until the water level in these areas reaches an elevation sufficient for over-top-
ping. These areas are identified manually before the simulation based on high points in 
the topography, and the higher �min values are specified for select vertices and elements. 
In practice, this can be done relatively quickly by using a polygon shapefile that outlines 
the areas where variable �min is desired. From there, a simple Python script can be used to 
identify and store the elements and vertices contained in the polygon to be looked up later 
when ADCIRC is running. Herein, we use a value of �min = 0.05 in most of the domain, 
and a higher value of �min = 0.99 in select areas to represent flow barriers.

2.1.3  Precomputing corrections at the grid scale

ADCIRC uses the continuous-Galerkin, finite-element method to solve for water levels and 
current velocities at the vertices of triangular finite elements within an unstructured mesh. 
Accordingly, subgrid corrections are included by averaging quantities over areas corre-
sponding to the elements and vertices (Woodruff et al. 2021). Element-averaged quantities 
include: ⟨H⟩G , CUU , CVU , CUV , CVV , and � , whereas vertex-averaged quantities include: 
⟨H⟩G , ⟨H⟩W , CM,f  , and � . These averaged quantities are computed from elevation and land-
cover raster datasets at a much higher resolution than the model grid. Note that ⟨H⟩G and � 
must be represented as both vertex- and element-averaged quantities, due to how ADCIRC 
uses these variables to solve the governing shallow water equations.

For the element-averaged quantities, each element is split into three sub-elements 
(Fig. 2), the raster cells within each sub-element area are located, and then the averaged 
quantities are computed for a given water surface elevation. For vertex-averaged quanti-
ties, the values from the surrounding element sub-areas are integrated and area-averaged 
to the vertex. Additionally, depending on the closure approximation used for each term in 
the governing-equation, either a grid-averaged ⟨⋅⟩G or a wet-averaged representation ⟨⋅⟩W 
was computed. For grid-averaged quantities, the entire averaging area is taken into account, 

Fig. 1  Water level contours (m relative to NAVD88) along the North Carolina Outer Banks during a simu-
lation of Hurricane Matthew in 2016 on the SABv2 mesh. The barrier islands, where the wetting criterion 
�
min

= 0.99 has a higher value, are outlined in red
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whereas for wet-averaged quantities, only the subgrid areas that are underwater for a par-
ticular water surface elevation are included.

For computational efficiency, we use look-up tables in subgrid models while performing 
calculations. These tables are created by pre-computing subgrid quantities prior to the start 
of the simulation using information from bathymetric and landcover datasets. Upon initia-
tion of the model, these arrays are read into memory to be accessed by the code for the 
duration of a simulation. In Woodruff et al. (2021), for element-based quantities, the size of 
the look-up table of each quantity was:

where N� is the number of water surface elevations used in the look-up table (e.g., 401 
possible elevations between −20 m and +20 m ), NVE = 3 is the number of vertices in a 
triangular element, and NE is the number of elements in a computational mesh. For vertex-
based quantities, the size of the look-up table is:

where NV is the number of vertices in a mesh.
Although look-up tables are used commonly to support subgrid corrections (Sehili et al. 

2014; Wu et al. 2016; Kennedy et al. 2019; Woodruff et al. 2021; Begmohammadi et al. 
2021), their expansion to ocean-scale domains created challenges for both their creation 
and their use at runtime. For the precomputations to create the look-up table in this study, 
the in-memory data storage of ocean-scale elevation and landcover data was managed 
carefully. The creation of the subgrid look-up tables was done entirely in Python (https:// 
github. com/ ccht- ncsu/ subgr idADC IRCUt ility). Although datasets were split into manage-
able sizes, the task is challenging with CPUs because relatively small ( 0.25◦ × 0.25◦ ) DEM 
tiles with 1∕9 arc-second resolution contain almost 66 million pixels. To speed up the cal-
culations, within the coverage of the datasets, subgrid calculations were performed using 
a Graphical Processing Unit (GPU) accelerated Python library called CuPy (Ryosuke et al. 

(9)N� × NVE × NE,

(10)N� × NV ,

Fig. 2  Examples of element- and vertex-averaged areas: (left) averaged quantities from sub-elements are 
combined for each triangular element, and (right) averaged quantities from sub-elements are combined for 
each vertex for a tidal creek near Savannah, GA

https://github.com/ccht-ncsu/subgridADCIRCUtility
https://github.com/ccht-ncsu/subgridADCIRCUtility
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2017), by looping through each of the elevation and landcover datasets. Outside the cover-
age of the datasets (e.g., in open water), the look-up tables were constructed to mimic the 
conventional ADCIRC, by allowing elements and vertices to be either fully wet or fully 
dry. These look-up tables were then saved in a NetCDF-formatted file to be read by subgrid 
ADCIRC.

For the new mesh described below, the NetCDF-formatted file would have been larger 
than 10 GB , which has implications for file input and memory usage at runtime. For meshes 
with higher resolution, the look-up table sizes would become untenable. To reduce their 
sizes, the look-up tables were changed to consider a set of possible � values, representing a 
state of dryness ( � = 0 ) to fully wet ( � = 1 ) at an evenly spaced increment. Averaged vari-
ables were then calculated by using the water surface elevations that would correspond to 
these wet area fractions. This reduced the size of the look-up tables to:

where N� is the number of possible � values, which is determined by the user. This is 
contrasted with the number of possible surface elevations, N� , in the earlier version of the 
look-up tables in Eq. 9. Whereas N� was set typically to larger values (e.g., 401 possible 
water surface elevations), N� can be set to smaller values and still represent the variability 
in wet area fraction at each location. Herein, we use N� = 11 , which decreased the look-up 
table size. With this new scheme, a new look-up table of N� water surface elevations ( � ) 
corresponding to each � increment was derived so that the � for a particular element could 
be found depending on the water surface elevation in the element, the � look-up table, and 
the evenly spaced � increments.

2.2  Storm simulations with subgrid corrections

2.2.1  South Atlantic Bight

Subgrid ADCIRC is extended for storm surge predictions along the South Atlantic Bight 
(SAB) on the southeast US coast. This region stretches from West Palm Beach, Florida 
(FL), to Cape Hatteras, North Carolina (NC), and includes more than 1000 km of coastline 
with a maximum shelf width of 200 km (Atkinson and Menzel 1985). The SAB’s location 
and wide continental shelf make it particularly vulnerable to storm surge caused by tropical 
cyclones. Many studies have sought to understand the complex behavior of tides and cir-
culation in this region (e.g., Redfield 1958; Blumberg and Mellor 1983; Chen et al. 1999). 
Tidal prediction along the SAB is particularly challenging due to the amplification that 
occurs as the tide propagates from the shelf break toward the coast, and due to the dramatic 
dissipation in energy as it interacts with the complex estuarian and riverine geometry pre-
sent in the region (Blanton et al. 2004; Bacopoulos and Hagen 2017).

Due to the large size of the SAB, a substantial amount of elevation and landcover data 
are available to describe its coastline. A total of 830 elevation and landcover datasets 
(415 of each) were identified for use in this study (Fig.  3). Elevation datasets were col-
lected from the National Oceanic and Atmospheric Administration (NOAA) through the 
NOAA Digital Coast platform, and from The National Map (TNM) from the United States 
Geological Survey (USGS). The NOAA datasets are comprised of 1∕9 arc-second and 
1∕3 arc-second digital elevation model (DEM) tiles of nearshore bathymetry and topog-
raphy from the continuously updated digital elevation model (CUDEM) produced by the 
NOAA National Centers for Environmental Information (CIRES 2014). These datasets 

(11)N� × NVE × NE
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were merged using QGIS with 1∕3 arc-second DEM tiles from TNM for inland regions. 
Land-use and landcover are represented by Coastal Change Analysis Program (C-CAP) 
regional 1 arc-second resolution datasets. It should be noted that, although the model 
domain will extend beyond the SAB to also represent the western North Atlantic Ocean, 
Caribbean Sea, and Gulf of Mexico, subgrid corrections were applied only to the SAB 
region where flooding is expected and where detailed water level analysis is desired. This 
reduced the overall amount of data, but even so, these elevation and landcover datasets 
amounted to more than 197 GB of compressed raster-formatted data.

2.2.2  Mesh development

Several meshes have been developed for ADCIRC-related studies in the SAB. Blanton and 
Luettich (2008) created a high-fidelity mesh to resolve important topographic and bathy-
metric features in North Carolina and extended the mesh inland to the 15 m contour. A 
mesh with high resolution along the South Carolina coast was developed to resolve features 
with the size on the order of 100 m (URS Corporation 2009). Bender (2013, 2014, 2015) 
developed meshes to cover the region from South Florida to Georgia. These meshes were 
used to develop storm surge and flooding risk maps for their areas of coverage. Thomas 
et al. (2022) merged these regional meshes to describe the entire SAB with a mesh with 
about 5.5 million vertices and an average resolution in coastal areas of about 100 m. Apart 
from high-resolution mesh development for the use in floodplain mapping studies, coarser 
meshes like the Hurricane Storm Surge Operational Forecast System (HSSOFS) mesh are 
used during active storm events to forecast water levels along a coast. The HSSOFS mesh 
consists of about 1.8 million vertices, has an average resolution in coastal areas of about 
500  m, with floodplain coverage from Southern Texas along the Gulf of Mexico to the 
North Carolina Outer Banks (Riverside Technology and AECOM 2015).

Fig. 3  Merged rasters containing the 415 elevation and 415 landcover datasets for the SAB
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Recently, a mesh was developed as part of the South Atlantic Coastal Study (SACS; 
U.S. Army Corps of Engineers 2021), with the goal to understand vulnerability and flood-
ing risks along the entire coastline. The SACS mesh has a minimum element edge length 
of about 20 m , and thus, it resolves most of the hydraulically significant channels along the 
SAB. This mesh was validated for seven historical storms and then used in a study involv-
ing ensembles of thousands of synthetic storms (Owensby et al. 2020). However, the SACS 
mesh is expensive, with 12,  288,  247 elements and 6,  179,  416 vertices. Although this 
mesh is the state-of-the-art for storm surge predictions in the SAB, there is an opportunity 
for subgrid corrections to offer comparable accuracy on a coarser (more-efficient) mesh.

In this study, a new mesh was developed to test subgrid corrections for storm surge 
predictions in the SAB. This mesh provides coverage at ocean scales but with relatively 
coarse resolution along the SAB. It consists of 772, 268 elements and 392, 358 vertices, 
with a maximum element edge length of 50 km in open water and a minimum of 500 m in 
the nearshore. These maximum and minimum resolutions were chosen so the mesh would 
resolve large-scale channels and bathymetric features, but would alias many subgrid-scale 
features like small tidal channels, raised roadways, or intercoastal waterways at the grid 
level. Elements and vertices were aligned with a high-resolution coastline along the SAB 
(Contreras et al. 2021) and the US medium shoreline (National Oceanic and Atmospheric 
Administration 2021b) in other regions. The mesh was bounded at the same inland loca-
tions as the SACS mesh, which has an inland boundary that aligns with either the 10 m or 
20 m topographical contour (Owensby et al. 2020). Thalweg data were used to align ele-
ments and vertices with important hydraulic features like major rivers, inlets, and inland 
waterways. Steep bathymetric gradients in the offshore were resolved to ensure proper tidal 
propagation (Roberts et al. 2019b). The mesh was designed using Oceanmesh2D (Roberts 
et al. 2019a). It should be noted that this new SABv2 mesh has 15 times fewer computa-
tional grid cells than the existing SACS mesh. The highest disparities in resolution between 
the two meshes occur at inland locations along the complex coastline of the SAB (Fig. 4).

2.2.3  Hurricane Matthew in 2016

Hurricane Matthew evolved in the western North Atlantic Ocean over a 15-day period dur-
ing 2016. The storm started as a strong tropical wave below 10◦ N latitude on Septem-
ber 23 off the western coast of Africa, and strengthened during the next few days until it 
became a tropical storm on September 28 just north of Barbados in the Lesser Antilles of 
the West Indies (Stewart 2017). Matthew rapidly intensified between September 30 and 
October 1 to a category-5 hurricane on the Saffir-Simpson scale with a peak intensity of 
145 knots . During the eye wall replacement cycle, Matthew downgraded to a category 4 
storm before making landfall near Les Anglais, Haiti, on October 4. Matthew weakened as 
it passed through the Bahamas, making landfall near West End on Grand Bahama Island 
on October 7 with category-3 status. Continuing northward, the storm ran shore-parallel 
between 30 and 50 nautical miles from Florida to North Carolina with category 2 and 1 
intensity before starting its extra-tropical transition on October 9, moving eastward of Cape 
Hatteras, North Carolina, and dissipating in the North Atlantic (Stewart 2017).

The storm’s effects on coastal water levels were observed by a total of 232 temporary 
gauges and long-term stations throughout the SAB. NOAA operates 22 stations, typically 
at the open coast. The USGS deployed 204 temporary gauges both at the coast and along 
inland waterways, and the Flood Inundation Mapping and Alert Network (FIMAN) oper-
ated 6 permanent stream gauges during the event (Fig.  5). These observations describe 
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how the surge varied with the storm. The maximum observed storm surge in the USA dur-
ing Matthew was 2.35 m above normal tide at Fort Pulaski, Georgia (GA). Similarly high 
water levels occurred along the SAB from Fernandina Beach, Florida (FL), Charleston, 
South Carolina (SC), and Hatteras, North Carolina (NC), with high water levels measuring 
2.12 m , 1.89 m , and 1.85 m at these respective locations. Inundation extended inland in this 
region, with many locations experiencing 0.6 to 1.5 m of surge above ground level. The 
Racy Point gauge along the St. Johns River, FL, recorded a maximum storm tide of 1.4 m 
above mean higher high water (MHHW) generated by the combined effect of storm surge 
and freshwater input from rainfall. These flood levels varied significantly in NC with the 
highest levels recorded on the sound side of the Outer Banks (Stewart 2017).

2.2.4  Simulations

Wind fields and surface pressures of Matthew (2016) from Oceanweather Inc. (OWI) were 
used in this study to force the simulations. The OWI fields are produced from weather sta-
tion, buoy, aircraft, ship, and satellite stations and are considered highly accurate for use 
in hurricane storm surge hindcasts (Oceanweather Inc. 2018). For Matthew, forcing data 
are described on a lower-resolution, basin-scale grid covering 5◦ N to 47◦ N and 99◦ W to 
55◦ W with a resolution of 0.25◦ , and a higher-resolution, regional inset grid from 15◦ N 
to 40◦ N and 82◦ W to 68◦ W with resolution 0.05◦ . The OWI data cover a time period 
between 0000 UTC October 01, 2016, to 0000 UTC October 11, 2016, with a 15-minute 
time interval (Thomas et al. 2019).

Fig. 4  SAB portions of SABv2 and SACS meshes: (left) SABv2 mesh bathymetry along the SAB, with 
colored boxes (magenta, red, blue) to indicate locations for (right) comparison between mesh resolutions 
(m) for SABv2 and SACS, with the coastline shown as a white line. Note that both the SABv2 and SACS 
meshes extend beyond what is shown in this figure
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ADCIRC simulations were performed using conventional ADCIRC on both the high-
resolution SACS and coarse SABv2 meshes, and subgrid ADCIRC on only the SABv2 
mesh. Each simulation covered 25 days starting at 0000 UTC September 16, 2016, and 
ending at 0000 UTC October 11, 2016. All simulations used a 1 s timestep and started with 
a tidal ramp period of 5 days.

Time-dependent tidal elevation prescribed along the open ocean boundary is computed 
from the harmonic constituents of the TPXO tidal model (Egbert and Erofeeva 2002). For the 
SAB region of the SABv2 mesh, 2016 Coastal Change Analysis Program (C-CAP) regional 
landcover datasets were downloaded from NOAA Digital Coast (National Oceanic and 
Atmospheric Administration 2021a) were converted to Manning’s n values (Owensby et al. 
2020). Areas outside the SAB region had a constant Manning’s n value of 0.02. These values 
were then interpolated to mesh vertices for the SABv2 coarse mesh and used for bottom fric-
tion and advection corrections in the subgrid simulation on the SABv2 mesh. Other param-
eters used in simulations on the SABv2 mesh included: spatially constant horizontal eddy vis-
cosity of 50 m2∕s , variable primitive weighting coefficient ( �0 ) between 0.005 and 0.03, sea 
surface height above geoid of 0.284 m to represent the pre-storm rise in water levels due to 
long-term atmospheric and oceanographic effects (Gill and Niiler 1973; Ferry and Reverdin 
2000; Shin and Newman 2021), surface directional effective roughness length, and the surface 

Fig. 5  Gauge locations for Mat-
thew (2016)
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canopy coefficient. The sea surface height above geoid value was determined from the mean 
monthly water level taken at water level gauges during the months when historical storms 
Hugo, Andrew, Fran, Frances, Matthew, Irma, and Florence occurred. The surface directional 
effective roughness and surface canopy coefficient in the SABv2 mesh were also derived from 
C-CAP landcover datasets and were interpolated onto the mesh using the ADCIRCModules 
toolkit (Cobell 2020). The SABv2 simulations use an implicit formulation to compute the 
complete gravity wave term, which is available in ADCIRC v55 (Pringle et al. 2021).

Simulations on the SACS mesh used seven nodal attributes including: sea surface height 
above the geoid, primitive weighting coefficient, Manning’s n, internal tide friction, sur-
face directional effective roughness length, advection state, and surface canopy coefficient 
(Owensby et al. 2020). The same sea surface height above geoid used for the SABv2 simu-
lations was used for the SACS simulation. NOAA’s 2010 30 m C-CAP landcover dataset 
was used for Manning’s n values and surface directional effective roughness length. Primi-
tive weighting in the continuity equation was set to 0.03 for areas immediately surround-
ing the coast and 0.005 elsewhere. In areas where wooded canopy was present and likely 
to prevent the momentum transfer of wind to the water surface, the surface stresses were 
disabled via surface canopy. Internal tide friction was used in deep areas with steep bathy-
metric gradients (shelf breaks) to partially account for dissipation from the conversion of 
the barotropic tides to baroclinic tides not directly considered for in barotropic ADCIRC 
(Owensby et  al. 2020). The SACS simulations were performed with the lumped explicit 
formulation (Tanaka et al. 2011).

2.3  Error metrics

Water level data from the 218 gauge locations were used to evaluate the accuracy of the 
ADCIRC simulations (Fig. 5). The accuracy of the simulations will be evaluated relative 
to observations of peak water levels and hydrographs. Peak-to-peak analysis of high water 
levels were compared to observations including root-mean-square-error ( ERMS):

coefficient of determination ( R2):

and mean normalized bias ( BMN):

in which N is the number of observation stations, � and 𝜁 are the water surface elevations 
from the observations and predictions, respectively, and 𝜁 is the mean water surface eleva-
tion from the observations. Another metric was best-fit slope (m in 𝜁 = m𝜁 ) from a linear 
regression fit between peak water levels from predictions and observations. Ideal values 
for ERMS and BMN are zero, indicating a perfect match in peak water level prediction. Ideal 
values for R2 and m are unity, indicating an ideal 1-to-1 match between predictions and 
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observations. In addition to performing error metrics on high water measurements at the 
gauge locations, ERMS and BMN statistics were calculated for the entire water level hydro-
graphs (i.e., time series) at select locations along the coast for each simulation. For the 
time-series analysis, in Eqs. 12-14, N denotes the number of surface elevations in the time 
series, and �i and 𝜁i are the model and observed surface elevation at Δts with Δts being the 
sampling time.

Computational efficiency was quantified by comparing the minimum run times of the 
subgrid and conventional ADCIRC simulations on the SABv2 and SACS meshes. The 
ocean-scale test case was run in parallel on 256 cores contained on 4 AMD Epyc “Milan” 
processors, each processor has 64 cores, and each node has 2 processors with 256 GB 
of memory and a clock speed of 2.45 GHz . The processors are connected via an Infini-
band switch in the Anvil high-performance computing cluster at Purdue University. Each 
simulation was run in triplicate, and the minimum wall-clock time was used for timing 
comparisons.

3  Results

3.1  Level 1 corrections in synthetic winding channel

The Level 1 corrections in ADCIRC will first be evaluated via simulations of controlled 
flow in a synthetic compound channel. This synthetic domain (Fig.  6, left) has dimen-
sions of 120 m by 800 m , and it consists of a planar floodplain and a deeper, trapezoidal 
winding channel. The planar floodplain has a slope of 0.0001 m∕m , and its ground surface 
elevations vary linearly from −1 m at the top of the domain to −1.08 m at the bottom of 
the domain. The channel is always 1 m deeper than its surrounding floodplain, with slop-
ing banks that are each 5 m wide and 1 m deep and a bed that is 5 m wide. This test was 
designed to not include wetting and drying. Water levels are applied as boundary condi-
tions at the top and bottom of the domain, and then discharges (through the channel and 
down the beach) will be compared with and without the Level 1 corrections.

Two finite-element meshes were created to represent this problem (Fig. 6, middle and 
right). The coarse mesh has 224 vertices and 370 elements, the high-resolution mesh has 
2052 vertices and 3734 elements, and thus the high-resolution mesh has approximately 9 
times more grid cells. The coarse mesh has an average element side length of 24 m , while 
the high-resolution mesh has element side lengths ranging from 20 m on the floodplain to 
5 m in the channel. The high-resolution mesh aligns elements and vertices with the chan-
nel banks and bed to fully resolve flow. The coarse mesh was created so that interpolation 
of elevation data to the vertices would alias the channel. The ground surface elevations 
for both meshes were interpolated using linear interpolation. Bottom friction is calculated 
using a constant Manning’s coefficient of n = 0.02 , and the horizontal eddy viscosity is set 
to Eh = 2 m2∕s.

The water surface elevations at the top and bottom boundaries are fixed to create a con-
stant water surface gradient. The water surface gradient is the same as the bottom slope, 
but the flow depth above the floodplain is varied from 0.15 m to 1.5 m . The simulations 
are run for 10 days to achieve steady conditions. For each simulation, the total discharge 
is computed by integrating the discharge across the bottom boundary. The Level 1 cor-
rections are evaluated via deviations from the ‘truth’ discharge from the high-resolution 
simulations:
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in which Qdev is the discharge deviation (expressed as a percent difference), and Q is a dis-
charge (units of m3∕ s ). Smaller deviations in discharge indicate a better representation of 
flow along the compound channel.

For this test case, five simulations are conducted: High-Resolution Conventional, 
in which ADCIRC is applied without any corrections on the high-resolution mesh, to 
provide a ‘truth’ solution for comparison; Coarse Conventional, in which ADCIRC is 
applied without any corrections on the coarse mesh; Coarse Level 0, in which subgrid 
ADCIRC is applied with Level 0 corrections on the coarse mesh; Coarse Level 1 Only 
Advection, where only the Level 1 correction to advection is added; and Coarse Level 
1, in which subgrid ADCIRC is applied with Level 1 corrections on the coarse mesh. 
For small depths, where friction forces dominate, it is expected that the Level 0 correc-
tions will overestimate bottom friction and thus limit artificially the total discharge. The 
Level 1 corrections to bottom friction, on the other hand, should be a better representa-
tion of flow processes. However, as water depths increase, the improvements offered by 
corrections to bottom friction should diminish as frictional effects reduce, and will give 
way to the corrections to advection.

(15)Qdev =
Qcoarse − Qtruth

Qtruth

× 100%

Fig. 6  From left to right, the 
DEM used for compound chan-
nel interpolation, coarse mesh, 
high-resolution mesh



Natural Hazards 

1 3

All simulations under-predict discharge across the bottom boundary of the domain, 
when compared to a reference simulation on a high-resolution mesh (Fig. 7). The under-
predictions are worse at small water depths; at a depth of 0.15 m , Coarse Conventional 
has Qdev = −25.6% , the Coarse Level 0 has Qdev = −17.7% , and the Coarse Level 1 Only 
Advection has Qdev = −17.6% . These results indicate that the bottom friction is limiting 
the flows predicted on the coarse mesh. This effect is reduced for Coarse Level 1, which 
has smaller discharge deviations for all water depths, notably Qdev = −14.9% at a water 
depth of 0.15 m . Therefore, at small water depths, Level 1 corrections offer improvement 
to simulated flow, and this improvement can mainly be attributed to enhancements in bot-
tom friction representation.

As water depths increase, the contribution of the advection correction begins to develop. 
For instance, the percent difference in velocity magnitude at a water depth of 0.5 m above 
the floodplain shows the relative contribution of each Level 1 correction to the flow when 
compared to the Level 0 simulation (Fig. 8). Here, a positive percent difference (colored 
red) indicates a higher velocity magnitude in the Level 1 simulations. From Fig. 8, it can be 
seen that although the bottom friction correction dominates along the channel, the advec-
tion correction influences flow where there are abrupt changes in the channel direction.

As water depths increase further, the improvements to discharge predictions offered by 
Level 1 corrections begin to be dominated by the corrections to advection. At a water depth 
of 1.5 m , the Coarse Level 1 Only Advection and the Coarse Level 1 simulations only dif-
fer by 0.43% with discharge deviations of −2.76% and −2.33%, respectively. These results 

Fig. 7  Discharge deviation of the Coarse Conventional (red circle), Coarse Level 0 (green X), Coarse Level 
1 Only Advection (magenta diamond), and Coarse Level 1 (blue square) from the high-resolution simulation 
(dashed line)
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indicate that Level 1 corrections to advection can be non-negligible and can still offer 
improvements to simulated flow.

3.2  Storm surge predictions in the South Atlantic Bight

Ocean-scale simulations are performed on coarse SABv2 and high-resolution SACS 
meshes of the Western North Atlantic with an emphasis on the SAB. Three simulations 
are performed: SACS Conventional, SABv2 Conventional, and SABv2 Subgrid with Level 
1 corrections. Water levels predicted with tidal and atmospheric forcing from Matthew in 
2016 are compared against observations of water levels for a 25-day period surrounding 
the storm.

Matthew affected water levels along the SAB from FL through NC (Fig. 9). Beginning 
October 7, the storm moved north from the Bahamas and started influencing water lev-
els along the south FL coast. In this area, high water levels of 1.75 m are predicted along 
barrier islands and inland waterways and estuaries. High water levels of 3 m in the small 
canals that line the eastern FL coast are predicted in SACS Conventional and SABv2 Sub-
grid. Matthew continued north, steered closer to the coast throughout October 7, and began 
affecting the Georgia/South Carolina coast on October 8. The GA and SC coasts have 

Fig. 8  Percent differences of 
velocity magnitudes between 
Level 1 and Level 0 (left), Level 
1 and Level 1 Only Advec-
tion (center), and Level 1 Only 
Advection and Level 0 (right) at 
a water level of 0.5 m above the 
floodplain
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riverine delta systems with streams, channels, and tributaries that experienced elevated 
water levels of about 3 m as the storm passed. Matthew tracked parallel to the coastline 
and caused flooding in NC on the morning of October 9 before moving offshore of the NC 
Outer Banks later that afternoon. Much like FL, the NC coast is characterized by barrier 
island and lagoon systems. As Matthew approached, storm surge was driven through tidal 
inlets and affected locations several kilometers from the open coast, with water levels of 
over 1.5 m in the Neuse River estuary. For a more detailed description of the storm’s syn-
optic history, refer to Thomas et al. (2019).

Matthew’s effects on coastal water levels were observed at 232 stations and gauges 
throughout the SAB. Of these 232 stations, 218 were used for water level analysis. To 
evaluate the performance of subgrid ADCIRC, we focus on 6 stations with representative 
results (Fig. 10). Most of these 6 stations were located along inland waterways and far from 
the open coast, to highlight the subgrid ADCIRC’s ability to represent surge propagation to 
inland areas on a coarsened computational mesh.

Storm surge gauge FLMAR03742 (last row in Fig. 10) was located along a 40-m-wide 
canal near the Saint Lucie Inlet, FL. A peak water level of 0.84 m at 0441 GMT October 

Fig. 9  Maximum water levels in the SACS Conventional (left), SABv2 Conventional (middle), and SABv2 
Subgrid (right) simulations along the SAB as Matthew moved up the coast. From the top row to the bottom 
row, the locations pictured are in the regions surrounding Jacksonville, FL, Charleston, SC, and Carteret 
County, NC
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Fig. 10  Station location (left) and hydrograph comparisons (right) between observation (black solid), 
coarse subgrid (green dash dot), coarse conventional (red dot), SACS conventional simulations (blue dash) 
relative to NAVD88 datum. These stations are in order from North to South, starting on the top row with 
station 8658163 in Wrightsville Beach, NC and ending on the last row with station FLMAR03742 in south-
east Florida
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07, 2016, was observed at this gauge during the storm. In this area, the SACS mesh has 
103-m resolution, and the SABv2 mesh has 775-m resolution. (Mesh resolutions at station 
and gauge locations were determined from element edge lengths connected to the nearest 
mesh vertex.) SABv2 Conventional was unable to resolve water levels at this station due 
to insufficient resolution in the surrounding area. SABv2 Subgrid predicted a peak water 
level of 1.26 m at 0400 GMT October 7, 2016, which is an over-prediction of 0.42 m . SACS 
Conventional briefly became wet at this location and recorded a peak water level of 1.17 m 
at 0400 GMT October 7, 2016, over-predicting the observations by 0.33 m . Although the 
SACS Conventional was able to simulate high water levels for a couple of hours surround-
ing the peak of the surge event, SABv2 Subgrid captures flow in this canal and thus had 
much better hydraulic connectivity in the area. Therefore, this location is an example of 
how subgrid corrections can improve connectivity without costly mesh refinements. In 
addition, SABv2 Subgrid had a comparable prediction error to the SACS Conventional at 
this location (Table 1).

NOAA station 8720357 (fifth row in Fig. 10) is located on the St. Johns River near the 
I-295 Buckman Bridge in FL. At this station, the maximum observed water level during 
Matthew was 1.04 m at 0000 GMT October 8, 2016. The St. Johns River in this location 
is nearly 5 km wide and is resolved by the SABv2 and SACS meshes with local resolu-
tions of 674 m and 106 m , respectively. SACS Conventional predicted a maximum eleva-
tion of 1.37 m at 2300 GMT October 7, 2016, and over-predicted water levels at this loca-
tion by 0.33 m . SABv2 Conventional experienced a rapid flooding event during the storm 
that increased water levels to 0.83 m . This water then became trapped and could not drain 
back to the ocean due to insufficient mesh resolution at a 350 m wide channel constriction 
approximately 15 km downstream on the St. Johns River toward the coast. SABv2 Subgrid 
predicted a peak water level of 1.05 m at 0000 GMT October 8, 2016, over-predicting the 
peak observation by 0.01 m . Therefore, although local resolution in the SABv2 mesh was 
sufficient to predict water levels along a wider section of the St. John’s River, subgrid cor-
rections were necessary to resolve tidal propagation and storm surge from the open coast 
to the station. This was also indicated by reductions in both ERMS and BMN at this station in 
the SABv2 Subgrid simulation.

Gauge SCGEO14322 (fourth row in Fig. 10) was placed along a 175 m-wide section of 
the Sampit River in Georgetown County, SC. The station was mounted at 0.88 m NAVD88 
and thus could not observe the full tidal range leading up to the storm. This station 
recorded a peak water surface elevation of 1.82 m at 1557 GMT October 8, 2016. Mesh 

Table 1  Error statistics comparing coarse and fine simulation hydrographs to observations during Matthew 
(2016)

Station SACS conventional SABv2 conventional SABv2 subgrid

E
RMS

(m) Bias E
RMS

(m) Bias E
RMS

(m) Bias

8658163 0.33 0.5821 0.33 0.5745 0.33 0.5253
NCONS13068 0.35 0.9257 – – 0.35 0.9402
SCHOR14326 – – – – 0.88 − 0.2559
SCGEO14322 0.20 0.0083 – – 0.08 0.0016
8720357 0.24 0.4369 0.21 0.2679 0.21 0.3872
FLMAR03742l 0.33 0.4002 – – 0.40 1.2167
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resolutions in this area vary from 666 m in the SABv2 mesh to 100 m in the SACS mesh. 
At this station, both SACS Conventional and SABv2 Subgrid were able to resolve storm-
induced flows in this channel. However, due to insufficient local resolution in its mesh, 
SABv2 Conventional was unable to resolve flow. SACS Conventional predicted a maximum 
water level of 1.80 m at 1500 GMT October 8, 2016, within 0.02 m of the observed peak. 
SABv2 Subgrid predicted a peak of 1.74 m at 1600 GMT October 8, 2016, or within 0.08 m 
of the observed peak. Although both the SACS Conventional and SABv2 Conventional pre-
dicted water levels very close to the observed peak, the subgrid simulation produced better 
overall results with around a third of the ERMS and smaller value BMN . This gauge location 
was chosen because it offered a direct comparison of results produced by the high-resolu-
tion SACS mesh and the coarse SABv2 mesh with subgrid corrections. Without the added 
corrections, the SABv2 mesh was unable to resolve flow.

Gauge SCHOR14326 (third row in Fig. 10) was located on a very small tidal creek near 
the border between NC and SC. SCHOR14326 recorded a maximum water surface eleva-
tion of 2.25 m at 1702 GMT October 8, 2016. This gauge was mounted at an elevation of 
1.83 m NAVD88, and thus could not measure the tidal fluctuations leading up to the storm. 
The tidal creek has a width of less than 2 m . The resolution surrounding this location is 
roughly 663 m and 255 m in the SABv2 and SACS meshes, respectively. At this gauge, 
only SABv2 Subgrid can represent flow, neither SACS Conventional nor SABv2 Conven-
tional have the necessary resolution to resolve this small-scale channel. SABv2 Subgrid 
predicted a peak water level of 2.31 m at 1700 GMT October 8, 2016, which was within 
0.06 m of the observed peak. The small channel near the gauge would be difficult to resolve 
in an ocean-scale model, because the resolution required would be expensive with respect 
to simulation wall-clock time.

Gauge NCONS13068 (second row in Fig. 10) was located near Jacksonville, NC, along 
the New River adjacent to Camp LeJeune Marine Base. Station NCONS13068 recorded 
a maximum water surface elevation during the storm of 0.92 m at 1854 GMT October 
8, 2016. The SABv2 and SACS meshes have resolution in this area of 625 m and 56 m , 
respectively. The New River is connected to the Atlantic Ocean through a channel that is 
250 m wide, and the channel surrounding the gauge location is 100 m wide. Thus, storm 
surge and tidal propagation to the gauge cannot be simulated with the SABv2 mesh due to 
insufficient resolution. This is evident in the hydrograph, where SABv2 Conventional does 
not show any water level results for the location. The coarse subgrid and SACS simulations 
are able to resolve flow though the New River estuary. SABv2 Subgrid predicted a maxi-
mum water level at the station of 1.12 m at 2200 GMT October 8, 2016 and SACS Conven-
tional had a result of 1.27 m at 2100 GMT October 8, 2016.

NOAA station 8658163 (top row in Fig. 10) is located at the end of the Johnnie Mercers 
Fishing Pier in Wrightsville Beach, NC. At this location, the maximum observed water 
level reached 1.28 m at 1700 GMT October 8, 2016. This sensor is located along the open 
coast and was exposed to unobstructed tides and surge during Matthew. At this location, the 
SABv2 mesh has resolution of 760 m , whereas the SACS mesh has resolution of 130 m . At 
the open coast, this resolution should be sufficient to fully resolve flow. All of the simula-
tions predicted water levels at this location, with SABv2 Subgrid predicting 1.54 m at 1700 
GMT October 8, 2016, SACS Conventional predicting 1.53 m at 1600 GMT October 8, 
2016, and SABv2 Conventional predicting 1.56 m at 1700 GMT October 8, 2016.

Maximum water levels from simulations were compared to observations across the SAB 
using 1:1 plots (Fig. 11), ERMS , R2 , BMN , number of dry stations, and best-fit slope (Table 2) 
to evaluate the performance of each simulation at predicting peak water levels. When con-
sidering all 218 high water levels, SABv2 Subgrid out-performed both SABv2 Conventional 
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and SACS Conventional across almost every error metric. Hydraulic connectivity was 
improved significantly in SABv2 Subgrid, in which only two observation locations were 
not wetted during the storm simulation. There was a reduction in variance ( R2 ) off the 1:1 
line in SABv2 Subgrid, indicating that the accuracy of the model results were improved. 
SABv2 Conventional and SACS Conventional produced negative R2 values, indicating that 
their predictions had a higher variance from the 1:1 than the mean of the observations. This 
high variance can be attributed to the large number of dry observation stations during their 
simulations: 14 dry stations for SACS Conventional, and 25 dry stations for SABv2 Conven-
tional. The ERMS of the peak water levels from SABv2 Subgrid was 47% and 39% lower than 
that of SABv2 Conventional and SACS Conventional, showing that there was an increase in 
accuracy offered by the subgrid model. Finally, the best-fit slope of SABv2 Subgrid shows a 
near-perfect fit to the observational data, meaning that the simulation and observations are 
highly correlated in the subgrid model.

Separately, peak water level statistics of the stations that became or remained wet in 
all simulations were analyzed to examine how the models predicted water levels when 
dry stations are not factored into calculations. Discounting the dry stations reduced peak 
water level prediction error ( ERMS ) of all simulations, most notably in SABv2 Conventional 
and SACS Conventional, which showed a 44% and 39% improvement, respectively. SABv2 

Fig. 11  Peak water level comparison between observations and simulations for SACS Conventional, SABv2 
Conventional, and SABv2 Subgrid in relation to NAVD88 datum. The green line in the plots represents the 
linear regression best fit for all of the stations, the blue line represents the linear regression best fit for only 
the wet stations in the simulation. The solid red dots represent observation stations that were wet in all 
simulations, and the empty dots represent observation comparison for the particular simulation

Table 2  Statistics from peak-to-peak analysis of subgrid and non-subgrid simulations when compared to 
observational data taken during Matthew (2016)

Simulation E
RMS

 (m) R
2 Best fit slope 

(m/m)
B
MN

Dry stations

SACS conventional all stations 0.67 – 0.13 0.99 0.0316 14
SABv2 conventional all stations 0.77 – 0.52 0.93 – 0.0126 25
SABv2 subgrid all stations 0.41 0.57 1.02 0.0535 2
SACS conventional wet stations 0.41 0.56 1.1 0.1287 –
SABv2 conventional wet stations 0.43 0.53 1.10 0.1442 –
SABv2 subgrid wet stations 0.35 0.68 1.05 0.0826 –
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Subgrid showed improvements to ERMS and R2 , but the simulation best-fit slope moved 
slightly off 1.02. The only-wet analysis also significantly increased the BMN of the SABv2 
Conventional and SACS Conventional, which indicates that the model consistently over-
predicts water levels.

Computing times of the three models used in this study show that the subgrid addi-
tions added computational expense to the model (Table  3). When compared to conven-
tional ADCIRC run on the same computational mesh, the subgrid model ran about 13% 
slower. However, the subgrid model ran over 13 times faster than the high-fidelity model 
and achieved comparable results. Thus, there was a significant efficiency gain by running 
subgrid ADCIRC on a coarsened mesh.

4  Discussion

The addition of Level 1 corrections and the expansion of subgrid ADCIRC to ocean-scale 
domains has resulted in considerable improvements to accuracy and efficiency of storm 
surge predictions when running on coarsened meshes. These improvements were dem-
onstrated on a synthetic compound channel test case, and then implemented in a realistic 
storm surge simulation of Matthew in 2016 on an ocean-scale domain with emphasis on 
the South Atlantic Bight. In this section, we discuss the implications of the additional accu-
racy provided by the subgrid corrections, and the remaining challenges for future work.

Ocean-scale subgrid corrections improved hydraulic connectivity throughout the SAB 
region when compared to the conventional model on the given coarse mesh. As an exam-
ple, for the water level predictions on the SABv2 mesh near the town of New Bern, NC 
(Fig.  12), the subgrid corrections capture hydraulic connectivity in the waterways sur-
rounding the town. SABv2 Conventional does not predict water in the Trent River (which 
flows into the Neuse River and is approximately 300 m wide in this area), whereas SABv2 
Subgrid fully inundates this waterway and smaller connected channels through the domain. 
The maximum water levels are predicted to be about 1.0 m at the confluence of the Trent 
and Neuse Rivers. This additional accuracy is important; New Bern fared relatively well 
during Matthew, but there was flooding due to storm surge in its downtown near the 
confluence.

Level 1 corrections improve subgrid ADCIRC by allowing the model to account for 
subgrid changes to bottom roughness and bathymetry to account for the effect of subgrid 
bathymetry and bottom roughness, which can affect bottom friction and advection terms. 

Table 3  Wall-clock times (sec) for ADCIRC simulations on 256 CPUs, and ratios of wall-clock times. The 
average time of three simulations was reported

Wall-clock time (s)

SACS conventional 82415
SABv2 conventional 5433
SABv2 subgrid 6083

Wall-clock time ratio

SABv2 subgrid/SABv2 conventional 1.13
SACS conventional/SABv2 subgrid 13.4
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These additions can affect maximum storm surge height and inland penetration (Resio and 
Westerink 2008; Rego and Li 2010; Akbar et al. 2017; Thomas et al. 2019). The synthetic 
compound channel test case demonstrated that Level 1 corrections improved discharge 
through the channel when compared to conventional ADCIRC run on the same compu-
tational mesh, by better representing bottom friction in the model. This enhancement is 
important when modeling storm surge because bottom friction is often one of the main 
influences on inland surge propagation. The Level 1 correction to advection also influences 
flow by accounting for flow contractions and expansions. In the case of the New River 
Inlet, NC (Fig. 13), Level 1 corrections to advection increased flow velocities though the 
narrow inlet. This is what we would expect. As flow enters the narrow channel, it accel-
erates though the contraction. However, when the bathymetry of the channel is discre-
tized onto a coarse computational mesh, the contraction is made wider and shallower and 
therefore will not accelerate the flow as much. By accounting for these subgrid changes in 
bathymetry with the Level 1 corrections to advection, we can improve the prediction of 
flow acceleration and velocity. In addition, the Level 1 correction to bottom friction allows 
flow to pass through the channel faster by reducing the bottom friction coefficient in the 
deeper channel. These improvements to the representation of local advection and bottom 
friction are a contributor to the improvements in predictive accuracy offered by the subgrid 
ADCIRC.

A spatially variable wetting criterion �min was introduced into subgrid ADCIRC as a way 
to limit flow in regions that were hydraulically disconnected, but had elements that spanned 
a flow-blocking feature like a narrow barrier island. At a regional scale, this addition worked 
well to prevent flows from the ocean passing across barrier islands and into estuaries and other 
inland water ways. For example, Cape Canaveral, FL (Fig. 14, left), is characterized by a nar-
row barrier island (with widths as small as 100 m) and a wide lagoon. If the mesh elements 
are too coarse to resolve the island at the model scale, it would not act as a barrier to flows. 
However, with the spatially variable �min , the larger storm tides are prevented from passing 
from the ocean into the lagoon, at least until the island is submerged. However, this criterion 
is not perfect, as it can limit artificially the flows at small inlets and channels near the flow-
blocking feature. In some parts of the domain, like the area surrounding Port Canaveral, FL 

Fig. 12  Maximum water levels (m NAVD88) during Matthew for the area surrounding New Bern, NC, 
along the Neuse River and adjacent waterways, as predicted by SABv2 Conventional (left) and SABv2 Sub-
grid (right)
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(Fig. 14, right), the spatially variable �min also inadvertently limited flow in the small channel 
into the port. This resulted in a lack of water level predictions from SABv2 Subgrid at a NOAA 
station 8721604 located in the port. Thus, there is need for continued improvement on the wet-
ting and drying algorithm in subgrid ADCIRC to improve hydraulic connectivity.

5  Conclusion

In this study, higher-order subgrid corrections to advection and bottom friction were imple-
mented in an ocean-scale storm surge model for the South Atlantic Bight. It was found 
that subgrid corrections allowed for accurate predictions of water levels across this domain 

Fig. 13  Difference in velocity 
magnitude between SABv2 Sub-
grid simulations run with Level 
1 and Level 0 corrections at the 
New River Inlet, NC during the 
height of the Matthew (2016)

Fig. 14  Examples of flow blocking due to spatially variable �
min

 at 2 locations along the SAB: Cape Canav-
eral, FL (left) and Port Canaveral, FL (right)
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during a simulation of Matthew in 2016 on the coarsened SABv2 computational mesh by 
resolving subgrid flow processes using high-resolution bathymetric and topographic data.

The main contributions and findings of this study are: 

1. The subgrid approach performs better with bottom friction and advection corrections 
from higher-resolution datasets. Corrections for these processes were added to the gov-
erning equations and look-up tables. These corrections improved discharge calculations 
in the synthetic winding channel test case by 11% when compared to the conventional 
model by better representing bottom friction in the model. Advection corrections in the 
ocean-scale storm surge model increased flow velocity magnitudes through inlets and 
winding channels, allowing for better predictions of flows to inland locations.

2. Subgrid corrections can be extended to ocean-scale domains, but only with careful 
design of the pre-processor to compute the corrections, the reduced representation of 
corrections for a range of wet area fractions, and efficient handling of corrections in 
memory during the simulation. The expansion of subgrid corrections to an ocean-scale 
domain required extensive elevation and landcover datasets with resolution down to 1/9 
arc second to cover the entire SAB. This large amount of data required the use of HPC 
and advanced memory management to pre-compute look-up tables and process these 
tables in subgrid ADCIRC.

3. Ocean-scale subgrid corrections improved the accuracy of a hindcast storm surge simu-
lation of Matthew in 2016 while running on a coarsened computational mesh. Water 
level predictions were validated with 218 permanent and temporary station and gauge 
locations from south Florida to the North Carolina Outer Banks. Peak water levels and 
hydrographs were analyzed and showed that subgrid corrections on the SABv2 mesh 
produced results with 39% less error than the SACS mesh and ran over 13 times faster.

The extension of subgrid ADCIRC to ocean-scale domains has the potential to improve 
accuracy and reduce computational cost for forecast and design studies of hurricane storm 
surge. These improvements are critical when evaluating flood risk. Coastal city planners 
and emergency managers need to understand which areas have the highest likelihood of 
flooding, often with resolution to the level of critical infrastructure. This information is 
necessary when designing flood control structures, creating and managing evacuation 
routes, and making decisions during the event. However, the necessary resolution is not 
feasible for a conventional model, especially when trying to predict over a large region 
during an active storm event. Thus, subgrid corrections are a viable option for providing 
this information at a fraction of the computational cost of a high-resolution conventional 
model.

Future work may include the addition of cell clones to properly resolve flow blocking 
features and hydraulically disconnected elements, and changing the wetting and drying 
threshold to rely on grid-averaged water depth ⟨H⟩G instead of the wet area fraction � . 
Additionally, subgrid corrections in ADCIRC could play an important role in incorporating 
compound flooding from rainfall into the model, because it accounts for the total wet area 
within a computational cell.
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