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Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Discretization of bathymetric data
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Aliasing of coastal features
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Increases in  resolution  Increases in computational cost
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Unresolved subgrid-scale features
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Subgrid corrections use information at smaller scales to ‘correct’ flow variables (water levels 
and current velocities) at the model scale

Selected applications to shallow water flows:
• Defina (2000) corrected advection and partially wet cells

 Able to coarsen by a factor of 32
• Casulli (2009) and Casulli and Stelling (2011) also corrected partially wet cells

 Used lookup tables created from high-resolution elevation data
• Volp (2013) corrected bottom stress

 Improved discharge and water surface slope relative to high-resolution counterparts

Able to coarsen the model resolution and still represent small-scale flow pathways and 
barriers

 Higher accuracy at same resolution, higher efficiency at coarser resolution

Previous subgrid studies
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We implemented subgrid corrections in ADvanced CIRCulation (ADCIRC)
• Widely used for predictions of coastal circulation, storm surge, and flooding during storms
• Solves modified forms of the shallow-water equations by using continuous-Galerkin, 

finite-element method on unstructured meshes

This required a careful definition of vertex- and element-based averaging areas:

Implementation into the ADCIRC model



12

Elemental vs. vertex averaged areas
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For this study, its governing equations were averaged to the mesh scale
• Example of momentum conservation in x-direction:

in which the red coefficients are new closure terms
• Similarly for momentum conservation in y-direction
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This allows for partially wet cells/elements
• Better connectivity through small-scale flow pathways

This required a major revision to ADCIRC’s wet/dry algorithm 
• Removed extensive logic to compare water levels and velocities between vertices

Changes to the wet/dry algorithm
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At first we used a so-called ‘Level 0’ closure:

Traditional Level 0

Wet/dry 𝜙 = 0 or 1 𝜙 = Τ𝐴𝑊 𝐴𝐺

Advection 𝐶𝑈𝑈 = 𝐶𝑉𝑈 = 𝐶𝑈𝑉 = 𝐶𝑉𝑉 = 1 𝐶𝑈𝑈 = 𝐶𝑉𝑈 = 𝐶𝑈𝑉 = 𝐶𝑉𝑉 = 1

Friction 𝐶𝑀,𝑓 = 𝐶𝑓 = Τ𝑔𝑛2 𝐻 Τ1 3 𝐶𝑀,𝑓 = 𝐶𝑓 𝑊

Surface Gradient 𝐶𝜁 = 1 𝐶𝜁 = 1

Note the differences for the wet/dry status and friction term

Closure coefficients for Traditional and Level 0 closures
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Level 0 Level 1
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Advection 𝐶𝑈𝑈 = 𝐶𝑉𝑈 = 𝐶𝑈𝑉 = 𝐶𝑉𝑉 = 1 𝐶𝑈𝑈 = 𝐶𝑉𝑈 = 𝐶𝑈𝑉 = 𝐶𝑉𝑉 =
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These Level 1 corrections are intended to correct inaccuracies 
in friction and advection predictions

Higher-level corrections to subgrid ADCIRC
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Expansion to ocean-scale storm surge modelling
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Increases to size and quantity of subgrid datasets
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Expansion of subgrid corrections to a ocean-scale mesh covering the entire 
South Atlantic Bight required:

• A total of 832 elevation and landcover data sets ranging from 3 - 30 m 
resolution.

• The 832 datasets are around 190 GB of elevation and landcover data
• Modification to the subgrid calculator code to incorporate Graphical 

Processing Units (GPUs) to speed up computations.
• Reduction in the lookup table size to reduce memory usage while the 

code is running. 
The subgrid processor code is available with and example at:

https://github.com/ccht-ncsu/subgridADCIRCUtility  

Improvements to the pre-processor code
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Testing on ocean-scale mesh with emphasis on the South Atlantic Bight
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Storm surge simulation of Matthew (2016) on SABv2 mesh
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Validation of ocean-scale subgrid results
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Wall-clock times (sec) for three test cases
• All tests run on 144 cores on the same hardware
• The subgrid additions increased computational expense by 2x*

but ran 7x faster than the SACS Conventional Model

Simulation Wall-Clock Time (sec)

SACS Conventional 160,511

SABv2 Conventional 10,919

SABv2 Subgrid 22,829

Efficiency of subgrid model at the ocean-scale
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SACS Conventional SABv2 Conventional SABv2 Subgrid
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Improvements to hydraulic connectivity and wet/dry front
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The main contribution of this study are:
1. Subgrid corrections were added to ADCIRC

• First application with hurricane-strength forcing
2. Inclusion of Level 1 Corrections in subgrid ADCIRC

• Improvements to bottom friction and advection representations
3. Expansion of subgrid ADCIRC to the ocean-scale

• Testing and validation for Hurricane Matthew (2016)
• Improvements to lookup table pre-processor code

The subgrid processor code is available with and example at:

https://github.com/ccht-ncsu/subgridADCIRCUtility  

Conclusions/discussion
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Thank you!


