Prediction of High-resolution Maps of Storm-driven Coastal Flooding Using Deep Learning

Tomás Cuevas López¹, Brandon Tucker¹, Casey Dietrich¹ & Dylan Anderson²

¹Department of Civil, Construction, and Environmental Engineering, NC State University ²Coastal Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Duck, NC, USA

> ADCIRC Users Group Meeting June 2023

Motivation: Real-time forecasting uncertainty

Motivation: Accelerate Predictions with Deep Learning

What is new?

- Astronomical tides
- Prediction of maps

イロト イヨト イヨト イヨト

3

Motivation: Proposed Workflow

Step 1

Data Collection

- Dataset of synthetic tropical cyclones
- MDA

Step 2

Training Library

- Hydrodynamic modeling
 - Downscaling

.

Step 3

Deep Learning

- RNN for time
- 2D CNN for space
- Train/Test/Validate

Step 4

Final Validation

 Compare NN against hindcasts

Motivation: Proposed Workflow

Step 1

Data Collection

- Dataset of synthetic tropical cyclones
- MDA

Step 2

Training Library

- Hydrodynamic modeling
- Downscaling

Step 3

Deep Learning

- RNN for time
- 2D CNN for space
- Train/Test/Validate

Step 4

Final Validation

 Compare NN against hindcasts **Step 1:** Dataset of synthetic tropical cyclones Filter storms by duration and proximity to NC

Step 1: Maximum Dissimilarity Algorithm

Selection of a representative set of storms - 1000 most dissimilar

Step 1: Maximum Dissimilarity Algorithm

Selection of a representative set of storms - 10 most dissimilar

Step 1

Data Collection

- Dataset of synthetic tropical cyclones
- MDA

Step 2

Training Library

- Hydrodynamic modeling
 - Downscaling

•

Step 3 Deep Learning

- RNN for time
- 2D CNN for space
- Train/Test/Validate

Step 4

Final Validation

 Compare NN against hindcasts

Step 2: Hydrodynamic Modeling Setup of ADCIRC simulations

Fort.13 & Fort.14: same for all (NC9^a)

Fort.15: Variable given tides Random date \implies random tide

- Find a yearly range of storms
- Iterate from 2020 to past
 - Month is given
 - Day is chosen randomly
 - Remove storms and continue
- **Fort.22**: Symmetric Holland Model No need to compute extra parameters
 - Coords, WS, P, and RMW

^aBlanton and Luettich (2008)

Step 2: Hydrodynamic Modeling Postprocessing ADCIRC simulations – Log files

HPC systems

- NCSU Hazel
- Purdue Anvil

Automated log files reading

- Run to completion or fail
 - Type or error
- Runtime
- CPU hours
- \approx 1M CPU hours and 2 months

Step 2: Hydrodynamic Modeling Postprocessing ADCIRC simulations – 2D Maps

"Boring storm"

Step 2: Hydrodynamic Modeling Postprocessing ADCIRC simulations – 2D Maps

Strong storm

"An A.I.-Generated Picture Won an Art Prize. Artists Aren't Happy", The New York Times.

Software to visualize and downscale ADCIRC

16

-

Kalpana allows easy visualization in GIS - netCDF to shapefile

Static Downscaling Method

Use of a high-resolution topo DEM to increase ADCIRC resolution and to expand or shrink the inundation extent^1

Rucker et al. (2021)

New version of the code

Main changes:

- From Python 2.7 to 3.9 (or higher)
- Pandas, GeoPandas, Shapely, rioxarray and Dask
- Some parallelization
- From 1 single script to 2 modules
- All functions available on GitHub and documented.

Mayor improvements:

- Preprocess to accelerate the downscaling
- From 45 to 7 minutes on a 15m res DEM of NC
- Less user-defined inputs
- Inputs related to mesh

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Step 2: Downscaling Max Water Elevation Example of Neuse River, NC

AND AND COMPANY

□ 10 - 12 □ 12 - 14 2 km

・ロト・日本・ 「三ト・三ト・一三、 つん

Step 2: Downscaling Max Water Elevation Example of Neuse River NC

Contraction of the

8 - 10

□ 10 - 12 □ 12 - 14 2 km

・ロト・日本・ 「三ト・三ト・一三、 つ々

Step 2: Downscaling Max Water Elevation Example of Neuse River, NC

the first

Step 2: Downscaling Max Water Elevation Downscaled DEM to greyscale image

୬୯୯ 23

2

< ≣⇒

Step 1

Data Collection

- Dataset of synthetic tropical cyclones
- MDA

Step 2

Training Library

- Hydrodynamic modeling
- Downscaling

Step 3

Deep Learning

- RNN for time
- 2D CNN for space
- Train/Test/Validate

Step 4

Final Validation

 Compare NN against hindcasts

Step 3: Neural Network Development

Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point

Step 3: Neural Network Development

Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point

Step 3: Neural Network Predictions RMSE for training and validation is close to 20 cm

Prediction at Duck (NC) NOAA tide gauge

Proposed Workflow

Summary and Future Work

NN to predict high-res maps of storm-driven coastal flooding

- Selected a subset of tracks that represents the max and avg of the tropical cyclone conditions in NC
- Simulated 1000 storms with ADCIRC using \approx 1M cpu hours
- Downscaled the peak surge output to produce high and constant-resolution maps
- Implemented a NN based on an LSTM and MLP layers to predict peak surge at single points

Coming soon:

- Define a new set of storms to simulate
- Simulate 1,000 more storms with a mesh developed by Johnathan Woodruff
- Neural network development
 - 2D CNN to generate maps

Motivation: Resolution (Accuracy) vs Model RunTime

Tracks parametrization

Track ID	Time step	
Storm 1	1	
:	÷	
Storm 1	р	
Storm 2	1	
:	:	
Storm 2	q	
:	:	
Storm N	1	
Storm N	r	

Track ID	Param 1		Param 2
Storm 1	P_{11}		P_{1m}
Storm 2	P_{21}		P_{2m}
:	:	· .	:
Storm N	P_{N1}		P _{Nm}

A key challenge is how to compute the distance for circular variables "Normal variables":

Euclidean distance

$$d=\sqrt{(v_1-v_2)^2}$$

Circular variables: metric by Camus et al. (2011)

$$d = \sqrt{\min(|d_1 - d_2|, 2 - |d_1 - d_2|)^2}$$

化口压 化固定 化医压化医压

<ロ>

Easy visualization of ADCIRC outputs in QGIS

Step 2: Hydrodynamic Modeling Postprocessing ADCIRC simulations – Peak Surge at NC

Step 2: Hydrodynamic Modeling Postprocessing ADCIRC simulations – Peak Surge at NC

Step 2: Downscaling Max Water Elevation Downscaled DEM to greyscale image

Water levels are binned: 1, 2, 3, 4, ...

Water levels are discrete now, and the values given by the input downscaling levels

If input levels can be scaled to integers \implies grayscale png (only if max level is below 255)

イロト イポト イヨト イヨー

Neural Network Architecture

