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Motivation: Real-time forecasting uncertainty
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Motivation: Accelerate Predictions with Deep Learning

What is new?

– Astronomical tides

– Prediction of maps
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Motivation: Proposed Workflow
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Motivation: Proposed Workflow
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Motivation Proposed Workflow
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Step 1: Dataset of synthetic tropical cyclones
Filter storms by duration and proximity to NC

7Bloemendaal et al. (2020)



Step 1: Maximum Dissimilarity Algorithm
Selection of a representative set of storms – 1000 most dissimilar

8Camus et al. (2011)



Step 1: Maximum Dissimilarity Algorithm
Selection of a representative set of storms – 10 most dissimilar
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Motivation Proposed Workflow
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Step 2: Hydrodynamic Modeling
Setup of ADCIRC simulations

Fort.13 & Fort.14: same for all (NC9a)

Fort.15: Variable given tides
Random date =⇒ random tide

– Find a yearly range of storms

– Iterate from 2020 to past

– Month is given
– Day is chosen randomly
– Remove storms and continue

Fort.22: Symmetric Holland Model
No need to compute extra parameters

– Coords, WS, P, and RMW

aBlanton and Luettich (2008)
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – Log files

HPC systems

– NCSU Hazel

– Purdue Anvil

Automated log files reading

– Run to completion or fail

– Type or error

– Runtime

– CPU hours

≈ 1M CPU hours and 2 months
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – 2D Maps

”Boring storm”
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – 2D Maps

Strong storm
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”An A.I.-Generated Picture Won an Art Prize. Artists Aren’t
Happy”, The New York Times.
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Kalpana
Software to visualize and downscale ADCIRC
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Kalpana
Kalpana allows easy visualization in GIS – netCDF to shapefile
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Kalpana
Static Downscaling Method

Use of a high-resolution topo DEM to increase ADCIRC resolution and to expand or shrink
the inundation extent1

Rucker et al. (2021)

Expand inundation Shrink inundation
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Kalpana
New version of the code

Main changes:

– From Python 2.7 to 3.9 (or higher)

– Pandas, GeoPandas, Shapely, rioxarray and Dask

– Some parallelization

– From 1 single script to 2 modules

– All functions available on GitHub and documented.

Mayor improvements:

– Preprocess to accelerate the downscaling

– From 45 to 7 minutes on a 15m res DEM of NC

– Less user-defined inputs

– Inputs related to mesh
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Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Downscaled DEM to greyscale image
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Motivation Proposed Workflow
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Step 3: Neural Network Development
Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point
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Step 3: Neural Network Development
Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point
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Step 3: Neural Network Predictions
RMSE for training and validation is close to 20 cm

Prediction at Duck (NC) NOAA tide gauge
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Proposed Workflow
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Summary and Future Work

NN to predict high-res maps of storm-driven coastal flooding

– Selected a subset of tracks that represents the max and avg of the tropical cyclone
conditions in NC

– Simulated 1000 storms with ADCIRC using ≈ 1M cpu hours

– Downscaled the peak surge output to produce high and constant-resolution maps

– Implemented a NN based on an LSTM and MLP layers to predict peak surge at single
points

Coming soon:

– Define a new set of storms to simulate

– Simulate 1,000 more storms with a mesh developed by Johnathan Woodruff

– Neural network development

– 2D CNN to generate maps
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Thank you – Gracias!

github.com/ccht-ncsu/Kalpana
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Motivation: Resolution ( Accuracy) vs Model RunTime
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Tracks parametrization

Track ID Time step

Storm 1 1
...

...
Storm 1 p

Storm 2 1
...

...
Storm 2 q

...
...

Storm N 1
...

...
Storm N r
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Track ID Param 1 . . . Param 2
Storm 1 P11 . . . P1m

Storm 2 P21 . . . P2m
...

...
. . .

...

Storm N PN1 . . . PNm



A key challenge is how to compute the distance for circular variables

”Normal variables”:
Euclidean distance

d =
√

(v1 − v2)2

Circular variables: metric by
Camus et al. (2011)

d =
√
min(|d1 − d2|, 2− |d1 − d2|)2
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Easy visualization of ADCIRC outputs in QGIS
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – Peak Surge at NC
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – Peak Surge at NC

Suspicious
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Step 2: Downscaling Max Water Elevation
Downscaled DEM to greyscale image

Water levels are binned: 1, 2, 3, 4, ...

Water levels are discrete now, and
the values given by the input
downscaling levels

If input levels can be scaled to
integers =⇒ grayscale png (only if
max level is below 255)
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Neural Network Architecture
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	1.2 Mesh resolution

