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Why do we care about storm surge?
• Hurricane storm surge is the principal cause of loss of 

life and damages during a tropical cyclone event.
– Hurricane Ian created 4.5 m of storm surge along the 

Southwestern Florida coast.
– Directly caused the death of 66 people.
– 41 of the 66 lives were claimed by storm surge.
– Ian caused and estimated $112.9 billion in damages 

(Bucci et al. 2023). 
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NHC Issues Storm Track 
and Intensity update 
every 6 hours

Storm surge simulations 
are run for latest advisory 
(1-3 hours)

Flood 
predictions are 
sent out to 
stakeholders.



Coastal Emergency Risk Assessment (CERA) Ian best track
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• Storm surge is predicted with numerical models that use 
numerical grids (or meshes).

• The computational grids represent bathymetric and 
topographic features important to capturing flow.
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How do we predict storm surge?
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https://github.com/CHLNDDEV/OceanMesh2D



Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Complex nearshore coastal geometry
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Discretization of bathymetric data
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Aliasing of coastal features
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Increases in  resolution à Increases in computational cost
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How can we improve storm surge models?
• How can we improve the current methodology used to 

increase accuracy in storm surge predictions?
– Use information at the scales of critical infrastructure 

to improve model performance.
• How can we decrease computational cost of the model?

– By running on coarsened domains while maintaining 
accurate results.
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Subgrid Corrections

• Subgrid corrections 
use information at 
smaller scales to 
‘correct’ flow variables 
(water levels and 
current velocities) at 
the model scale.
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How have subgrid flows been represented?
• Flow characteristics of neighboring areas are often highly correlated in 

shallow water flow models.
• Correlation can be represented by averaging information at finer scales to 

coarsened grids without sacrificing accuracy. 
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• Defina (2000) created an 
averaged flow model with 
wetting and drying based on 
subgrid elevations. 

• Casulli (2009) introduced 
subgrid corrections to an 
elegant finite volume model.



Variable C

How can we reduce computation cost?
• Computational cost in a subgrid model can be reduced by pre-computing 

subgrid corrections prior to running the simulation.
• These corrections can be stored in lookup tables that are referenced during 

the simulation.
• This method was used by Wu (2016) and Kennedy (2019) among others to 

save in computational cost.
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Variable B

Variable A

Simulation Decrease Runtime



How can we apply this to coastal ocean flows?
• Increasing the scale of the model moving from small test domains to 

regional domains in coastal areas.
• Apply coastal and ocean boundary forcing like astronomical tides, 

winds, and inland river flows.
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• Sehili et al. (2014) and Wang 
et al. (2014) applied the 
UnTRIM2 model to the Elbe 
Estuary and New York City 
respectively. 



How can higher-level corrections help?
• Improve flow predictions by accounting for small scale changes in 

bottom friction, advection, and water surface gradient in the model 
(Defina (2000), Volp et al. (2013), Kennedy et al. (2019)).
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Different 
land cover 
type

Changes in 
depth and 
flow 
acceleration
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scale

Subgrid 
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1. How can we implement subgrid corrections into a widely 
used storm surge model?

2. How can these corrections to applied to realistic/ocean-
scale domains?

3. What are some of the limitations of subgrid corrections 
in storm surge modeling?
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What questions are we trying to answer?



Chapter 1

• How can we implement subgrid corrections 
into a widely used storm surge model?

Chapter 2

• How can higher-level corrections be 
applied to realistic/ocean-scale domains to 
improve flow predictions?

Chapter 3

• What are some of the limitations of subgrid 
corrections in storm surge modeling?
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Chapter 1

• How can we implement subgrid corrections 
into a widely used storm surge model?

Chapter 2

Chapter 3
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We implemented subgrid corrections in ADvanced CIRCulation (ADCIRC).
• Widely used for predictions of coastal circulation, storm surge, and flooding during storms.
• Solves modified forms of the shallow-water equations by using continuous-Galerkin, finite-

element method on unstructured meshes.

This required a careful definition of vertex- and element-based averaging areas:

Implementation into the ADCIRC model
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Governing equations: GWCE
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Governing equations: Momentum
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For this study, its governing equations were averaged to the mesh scale.
• Example of momentum conservation in x-direction:

 in which the red coefficients are new closure terms.
• Similarly for momentum conservation in y-direction.
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This allows for partially wet cells/elements.
• Better connectivity through small-scale flow pathways.

This required a major revision to ADCIRC’s wet/dry algorithm. 
• Removed extensive logic to compare water levels and velocities between vertices.

Changes to the wet/dry algorithm
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At first, we used a so-called ‘Level 0’ closure:

Conventional Level 0

Wet/dry 𝜙 = 0 or 1 𝜙 = ⁄𝐴$ 𝐴%

Advection 𝐶&& = 𝐶'& = 𝐶&' = 𝐶'' = 1 𝐶&& = 𝐶'& = 𝐶&' = 𝐶'' = 1

Friction 𝐶(,* = 𝐶* = ⁄𝑔𝑛" 𝐻 ⁄, - 𝐶(,*	 = 𝐶* $

Surface Gradient 𝐶/ = 1 𝐶/ = 1

Note the differences for the wet/dry status and friction term.

Closure coefficients for Conventional and Level 0 closures
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Chapter 1

Chapter 2

• How can higher-level corrections be 
applied to realistic/ocean-scale domains to 
improve flow predictions?

Chapter 3
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Level 0 Level 1
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These Level 1 corrections are intended to correct inaccuracies 
in friction and advection predictions.

Higher-level corrections to subgrid ADCIRC
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Expansion to ocean-scale storm surge modeling
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Increases to size and quantity of subgrid datasets
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Testing on ocean-scale mesh

M
esh Resolution
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Chapter 1

Chapter 2

Chapter 3

• What are some of the limitations of subgrid 
corrections in storm surge modeling?
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How coarse is too coarse?
• How do subgrid results degrade as mesh resolution is 

incrementally coarsened?
• What guidelines can be established to optimize the 

accuracy and efficiency of ocean-scale subgrid storm 
surge models?
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Vertex #: 3,531,883  Element #: 6,812,980
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Vertex #: 1,751,839  Element #: 3,490,798
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Vertex #: 754,159  Element #: 1,496,184
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Vertex #: 359,086  Element #: 706,623
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Vertex #: 178,398  Element #: 346,137
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How coarse is too coarse?
• Flow connectivity through unresolved subgrid features is 

maintained in coarsened subgrid models.
• Flow blocking features constrain the level of coarseness 

that can be used.
• Resolution constraints depend on the application of the 

simulation and desired timing.
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NHC Issues Storm Track 
and Intensity update 
every 6 hours

Reduce storm surge 
simulation time by 
running on coarsened 
meshes

Deliver flood 
predictions to 
stakeholders faster
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Conclusions

1. Learned that subgrid corrections can be a utilized to 
predict hurricane storm surge.

2. Subgrid storm surge modeling can be expanded to the 
ocean-scale.

3. There are constraints on how coarse we can make a 
subgrid storm surge model, but there is still a significant 
advantage.

74



Acknowledgements

75



76

Thank you!


