Presentation: HPC User Research Symposium

Alireza wins Student Educational Award

Ph.D. student Alireza Gharagozlou won the Student Educational Award at the ASBPA National Coastal Conference 2018. This award is given annually to an undergraduate or graduate student who, through his or her research, is furthering the state of the science of coastal systems as it relates to the goals and mission of the ASBPA. Congrats to Alireza!

Alireza accepts the Student Educational Award during the awards luncheon at the ASBPA National Coastal Conference.

Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions

The goals of this project are to better understand the storm-induced erosion of barrier islands, and to develop ways to represent that erosion in predictive models on large domains. The critical objectives will be: (1) Develop a high-resolution hindcast of inlet creation in a barrier island system, (2) Explore the sensitivity of erosion predictions to the quality of input data, and (3) Implement a two-way coupling of small-scale erosion to larger-scale flooding. As a study area, we will consider the erosion of Hatteras Island during Hurricane Isabel (2003) and the creation of the so-called Isabel Inlet. The model will be validated with aerial surveys of island topography, collected immediately before and after the storm. We will quantify the model’s ability to predict the inlet creation given coarse inputs, and identify the necessary resolution to include this process in larger-domain models. The evolving ground surface will be used to update topography in a region-scale flooding model, to examine how flow through the Isabel Inlet affected the back side of the island.

JC Dietrich. “Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions.” U.S. Coastal Research Program, Storm Processes and Impacts Workshop, Technology Challenge, 2018/09/23 to 2019/09/22, $59,950 (Dietrich: $59,950).

Cyberinfrastructure for Enhancing Interdisciplinary Engagement in Coastal Risk Management Research

Tackling critical questions often requires the collaboration of researchers from different disciplines or institutions. Coastal hazards research is necessarily interdisciplinary and multi- methodological and often requires a team of researchers, due to its combination of storm-induced changes to the coastal environment, the effects of these changes on built infrastructure, and the combined effects on decision-making for individuals and communities. This paper introduces an interdisciplinary coastal hazard risk model that combines high resolution geospatial data, storm impact forecasts, and an agent-based model in the analysis, and then describes the model’s implementation in a data science cyberinfrastructure. Lessons learned and limitations are also outlined.

A Karanci, L Stillwell, C Lenhardt, JC Dietrich (2018). “Cyberinfrastructure for Enhancing Interdisciplinary Engagement in Coastal Risk Management Research.” 9th International Conference on Environmental Modelling and Software, Fort Collins, Colorado, USA, M Arabi, O David, J Carlson, DP Ames (eds).

Presentation: NSF Workshop 2018

Posters: EWC Research Symposium 2018

N Tull, JC Dietrich, TE Langan, H Mitasova, BO Blanton, JG Fleming, RA Luettich. “Improving Accuracy of Real-Time Storm Surge Inundation Predictions.” Environmental, Water Resources, and Coastal Engineering Research Symposium, North Carolina State University, 2 March 2018.

Improving Accuracy of Real-Time Storm Surge Inundation Predictions.

Continue reading