Multi-Scale Predictions of Storm-Driven Erosion, Breaching, and Flooding of Barrier Islands

PhD Research Proposal
August 7, 2019

Alireza Gharagozlou

Department of Civil, Construction and Environmental Engineering
North Carolina State University
Acknowledgements

Thesis Committee:

Dr. Casey Dietrich

Dr. Rafael Canizares

Dr. Helena Mitasova

Dr. Alejandra Ortiz

Dr. Margery Overton

1 Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

2 COWI North America Inc., New York, NY

3 Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC
Outline

• Introduction
• Proposed Research
• Numerical Models
• Preliminary Results
• Proposed Tasks

• Barrier islands vulnerability
• Storm impacts
• Predicting the impacts
• Objectives
• Erosion, Breaching, Coupling
• Hypotheses
• XBeach
• ADCIRC+SWAN
Outline

• Introduction

• Proposed Research

• Numerical Models

• Preliminary Results

• Proposed Tasks

 • Modeling erosion, overwash and inundation
 • Loose coupling

 • Island breach modeling
 • Two-way coupling
• Introduction

• Proposed Research

• Numerical Models

• Preliminary Results

• Proposed Tasks
Barrier Islands

NC Outer Banks, Hurricane Florence 2018
Storm Impacts

Florence (2018), NC

Irene (2011), NC

Arthur (2014), NC

Matthew (2016), FL
Morphodynamic models:

- Erosion, overwash, sediment transport, etc.
- High-resolution mesh
- Small-scale features
- Small domains
Storm surge and flooding models:

- Tide, wave, current, flooding, etc.
- Large domains
- From back-barrier to open ocean
- Coarse mesh resolution
Resolution Difference
Resolution Difference
Resolution Difference
What are the gaps?

- Widely used and very reliable models
- Not connected
- Coastal flooding models
 - Efficient for modeling hydrodynamics on large domain
 - Coarse mesh cannot resolve dune-scale features
 - Do not consider morphology

This is a problem especially when significant erosion occur
Connecting the models:

• Improve the accuracy of flooding predictions
• Predict large scale interactions of morphodynamics and hydrodynamic
• Study the damages to infrastructure from both sediment and water
• Introduction

• Proposed Research

• Numerical Models

• Preliminary Results

• Proposed Tasks
Objectives

1. Model storm-driven erosion, overwash, and inundation
2. Model breaching and channel formation during storm
3. Bridge the gap between region-scale and Island-scale models
Objectives

1. Model storm-driven erosion, overwash, and inundation
1. Erosion & Overwash

Overton et al. [2004], Clinch et al. [2012], Harter [2017]
- Vulnerable spots, erosion, overwash
- Storm surge estimation

McCall et al. [2010]
- Modeled the overwash in Santa Rosa Island during Hurricane Ivan (2004).
- Small domain size

A. Gharagozlou, J. C. Dietrich, A. Karanci, R. A. Luettich, and M. F. Overton
Objectives

2. Model Breaching and channel formation during storm
Breaching:

• Connects back-barrier to the ocean
• Depends on storm properties and topography of the coast
• Impacts the hydrodynamics and morphodynamics of the region
2. Modeling Breaching

Kraus [2003], De-Vet [2014], Elsayed et al. [2017]
- Breaching, erosion, channel formation
- Physic-based model improvement
- Small domain models

Kurum and Overton [2013]
- Land cover effects on breaching
- Multiple sediment layers
- Different sediment properties (median size and erodability)
- Instead of calibration factors we will use bed friction
2. Modeling Breaching

Research Questions:

How to include the **processes** involved in **breaching**?

How to predict the **location** and **size** of the breach?

How to apply the predictions on a **large-scale domain**?
Hypothesis 1:
The **accurate location and shape** of breaching and channelization during a storm can be predicted only if information about **the land cover and sub-layers** are included.

Hypothesis 2:
If we include a large-extent domain on the barrier island, significant **large-scale impacts** of breaching on water levels, flow velocities, and sediment transport can be studied.

Hypothesis 3:
Via targeted coarsening of the mesh resolution, the **computational time** will be improved while the **accuracy** of the **predictions in large scale** will be maintained.
Objectives

3. Bridge the gap between region-scale and Island-scale models
3. Coupling

Suh et al. [2015, 2017]
- One-way coupling
- Small domain

Cañizares and Irish [2008]
- Storm-driven erosion and breaching
- Coupling ADCIRC, Delft3D, and SBeach
- Suitable for simulating sediment overwash processes once the barrier island is fully inundated.
3. Coupling

Research Questions:

How to connect the morphodynamics and hydrodynamics during the storm on local and regional scales?

How temporal and spatial resolution requirements for coupling impact the predictions?
3. Coupling

Hypothesis 4:
The prediction of flooding extents and large-scale impacts of storm on back-barrier hydrodynamics will be improved if ADCIRC and XBeach models are coupled and the bathymetry predictions are updated dynamically.

Hypothesis 5:
In case of extensive breaching and channel formation, the frequency and duration of ground surface update has a significant impact on flooding predictions and can be modeled correctly if the temporal evolution of the breach is represented accurately.
• Introduction

• Proposed Research

• **Numerical Models**

• Preliminary Results

• Proposed Tasks
XBeach

Xbeach (Roelvink [2009])

- Nearshore hydrodynamics and morphodynamics
- Depth-averaged shallow water equations, Short-wave action balance
- Infragravity waves
- Dune face avalanching
- Structured mesh
- Typical domain size of 2—20 km
- Typical resolution of 2—20 m

Passeri et al. [2018]
ADCIRC+SWAN

ADCIRC+SWAN (Luettich et al [1992], Dietrich et al. [2013], Booij et al [1999])

• Powerful tool for flooding and storm surge modeling
• Finite-element model
• Shallow water equations, Wave action density equation
• Flexible, unstructured meshes
• Typical minimum resolution of 50—100 m

Cyriac et al. [2018]
• Introduction

• Proposed Research

• Numerical Models

• **Preliminary Results**

• Proposed Tasks
Motivations for Modeling Erosion

- Predict storm-driven erosion over large domains
- Develop techniques for coarsening predictions and coupling back to flooding models

Goals:

1. Validate XBeach erosion predictions on larger domains
 - Quantify model performance on 30-km of Hatteras Island during Isabel
2. Evaluate XBeach accuracy at coarser resolution
 - What happens if we use a coarser mesh?
3. Loose coupling XBeach and ADCIRC
 - What are implications as a hydraulic control to stop or allow flooding?
 - How ADCIRC predictions change with updated topography?
Hurricane Isabel

- Survey width: 250-300 m
- High resolution LiDAR: 2m
- Covering large extent
- Erosion, overwash, and breaching
- Pre- and post-storm data: 16 Sep — 21 Sep 2003
Computational grid:
- Alongshore: 15 m
- Cross shore: 3-35 m

Topo/Bathy data:
- Pre-storm LiDAR
- NC floodplain mapping DEM

Model setup:
- Simple model with minimal tuning
- To expand to other regions
- Waves and water levels from ADCIRC+SWAN
1. XBeach Validation

Observation Model

Introduction Proposed Research Numerical Models Preliminary Results Proposed Tasks

Proposed Tasks

35
1. XBeach Validation

Skill Score (Sutherland et al. [2004])

\[
Skill = 1 - \frac{\sum_{i=1}^{N} (dz_{b,\text{LIDAR},i} - dz_{b,\text{XBeach},i})^2}{\sum_{i=1}^{N} (dz_{b,\text{LIDAR},i})^2}
\]

- Skill Score > 0.5 is “Excellent”
- Model Skill Score = 0.59

![Graph showing skill score and bias](image)
2. Resolution Sensitivity

- Changing mesh spacing on smaller domain
 - Alongshore
 - Cross-shore
- Sensitivity of Skill Score to resolution
2. Resolution Sensitivity

- Alongshore spacing

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Skill</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>5m</td>
<td>0.68</td>
<td>-0.06</td>
</tr>
<tr>
<td>10m</td>
<td>0.69</td>
<td>-0.07</td>
</tr>
<tr>
<td>15m</td>
<td>0.68</td>
<td>-0.06</td>
</tr>
<tr>
<td>20m</td>
<td>0.69</td>
<td>-0.06</td>
</tr>
<tr>
<td>30m</td>
<td>0.69</td>
<td>-0.06</td>
</tr>
<tr>
<td>50m</td>
<td>0.67</td>
<td>-0.05</td>
</tr>
<tr>
<td>100m</td>
<td>0.69</td>
<td>-0.03</td>
</tr>
<tr>
<td>200m</td>
<td>0.69</td>
<td>-0.03</td>
</tr>
</tbody>
</table>
2. Resolution Sensitivity

- Cross-shore spacing

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Skill</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>3m</td>
<td>0.68</td>
<td>-0.06</td>
</tr>
<tr>
<td>5m</td>
<td>0.60</td>
<td>-0.05</td>
</tr>
<tr>
<td>10m</td>
<td>0.51</td>
<td>-0.03</td>
</tr>
<tr>
<td>15m</td>
<td>0.27</td>
<td>-0.03</td>
</tr>
<tr>
<td>30m</td>
<td>0.07</td>
<td>0.33</td>
</tr>
</tbody>
</table>
3. Loose Coupling
Mesh elevation in the beginning of the model:

- Observed pre-storm
- Observed post-storm
- XBeach prediction
3. Loose Coupling

Pre-storm topo

XBeach prediction
Conclusion

1. XBeach performance:
 • Model performance on 30 km domain is very encouraging
 • Beach profile, Erosion events, flooding extents match post-storm observation

2. XBeach mesh resolution:
 • Skill score is not sensitive to alongshore mesh spacing
 • Skill score gets worse as the cross-shore mesh resolution increases

3. ADCIRC-updated topo/bathy:
 • Beach and dune erosion contribute to flooding predictions
 • Results match the prediction in XBeach and post-storm observation
Limitations

1. Lack of Island Breaching:
 - During Isabel, an inlet was formed near Cape Hatteras
 - Channel formation can contribute to surge and flooding
 - The morphodynamics of breaching should be included in the model

2. Loose one-way coupling:
 - Static approach was used to update the bathymetry
 - Predictions did not account for temporal evolution of the surface
 - ADCIRC starts with a topography that has been already affected by the storm
 - Two-way coupling is needed to update the surface dynamically
• Introduction

• Proposed Research

• Numerical Models

• Preliminary Results

• **Proposed Tasks**
Region-Scale Predictions of Breaching

Isabel Inlet (2003)

- Three channels
- Total width of 520 m
- Maximum depth of 6 m
- Closed by USACE
Region-Scale Predictions of Breaching

Study Area and Computational Meshes

- 2-km and 15-km domains
- Minimum resolution
 - Alongshore: 2 m (5, 10 m)
 - Cross-shore: 2m (5, 10 m)
- Maximum alongshore spacing: 10 m (20, 30 m)
Hypotheses

Hypothesis 1: Modeling shape of the breach using land cover and sub-layer impacts.

Hypothesis 2: Studying the significant large-scale impacts of breaching

Hypothesis 3: Mesh coarsening and improving the computational time
Region-Scale Predictions of Breaching

Modeling the breach

- Idealized domain (T1 tests)
 - Uniform bathymetry (2-km domain)

- Realistic domain (T2 tests)
 - Real topo/bathymetry (2-km and 15-km domains)

Proposed Tasks

- Land cover (H1)
- Sub-layer (H1)
- Land cover + sub-layer (H1)
- Mesh resolution sensitivity (H3)
- Multi-scale impacts of pre-existing channel (H1, H2)
- Multi-scale impacts of Hindering the breaching (H1, H2)
Region-Scale Predictions of Breaching

T1-5: Pre-existing 50-m channel

T1-6: Pre-existing 300-m channel
T2-5: Breaching will be hindered
Coupling ADCIRC and XBeach

Time-varying bathymetry update

Two-way coupling

Implemented in ADCIRC by Dr. Chris Massey

Linearly Changes

\[b_{t_i} \rightarrow b_{t^*} \rightarrow b_{t_{i+1}} \]

No Changes

Time Step Loop

Update Bathymetry During BTP \((z)\)

Solve GWCE \((z)\)

Update WAD

Solve Momentum Equations \((V)\)
Hypotheses

Hypothesis 4: Two-way coupling of models with temporal bathymetry update

Hypothesis 5: Evaluating the temporal resolution requirements
Coupling ADCIRC and XBeach

Coupling models

- Idealized domain (T3 tests)
- Realistic domain (T4 tests)

- Loose coupling (H4)
- Two-way coupling (H4)
- Varying temporal resolution (H5)
- Linear surface update (H5)
- Changing breach size (H4,5)
- Changing lagoon size (H4,5)
- Blocking the existing inlets (4)
Region-Scale Predictions of Breaching

T3-3: Ground surface update every 1, 3, 5, 10 hours

T3-4: Size of the breach (Depth and width) will be doubled
Region-Scale Predictions of Breaching

T4-4: The existing inlets along the barrier island will be blocked.
Plan of Work

<table>
<thead>
<tr>
<th>Topic</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan-Jul</td>
<td>Aug Sep</td>
</tr>
<tr>
<td>Objective 1: modeling erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating meshes and DEMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XBeach model</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>ADCIRC+SWAN model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission to journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 2: modeling breach</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Creating DEMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>creating meshes</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Extracting Jan cover and substrate layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model calibration</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Idealized tests and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realistic tests and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission to journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective 3: coupling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating meshes and DEM interpolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparing model setup (upscaling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing time-varying bathymetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idealized tests and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realistic tests and analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission to journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing PhD Dissertation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Defense</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Need to study the large-scale and small-scale storm impacts
- We use ADCIRC+SWAN and XBeach
 - Erosion, overwash, flooding
 - Barrier island breaching
 - Connecting the models
- Two-way coupled modeling approach
- Predicting multi-scale morphodynamics and hydrodynamic impacts
- Improving the flooding predictions
- Preliminary step toward real-time predictions of morpho- and hydrodynamics during storm
- Contributing to the literature
Thank You!