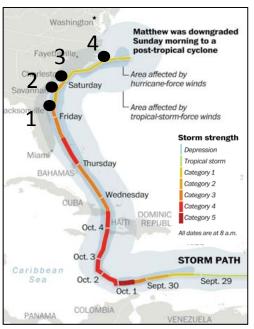
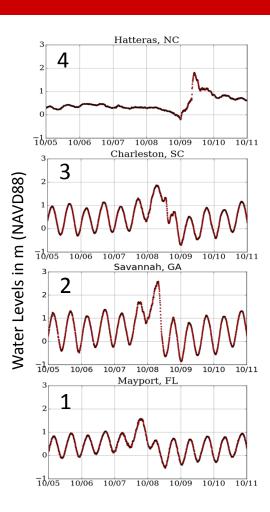
Using a Multi-Resolution Approach to Improve the Accuracy and Efficiency of Flooding Predictions

Ajimon Thomas¹, J.C. Dietrich¹,

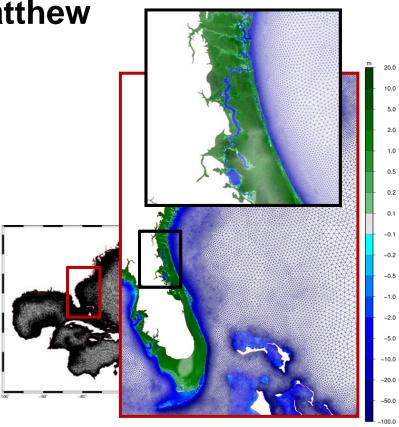
T.G. Asher², M. Bell³, B.O. Blanton⁴, J.H. Copeland³, A.T. Cox⁵, C.N. Dawson⁶, J.G. Fleming⁷, M. Loveland⁶, R.A. Luettich²


¹Civil, Construction and Environmental Engineering, North Carolina State University
²Institute of Marine Sciences, UNC Chapel Hill, ³WeatherFlow Inc.
⁴Renissance Computing Institute, UNC Chapel Hill; ⁵Oceanweather Inc.
⁶Institute of Computational Engineering and Sciences, UT Austin; ⁷Seahorse Coastal Consulting

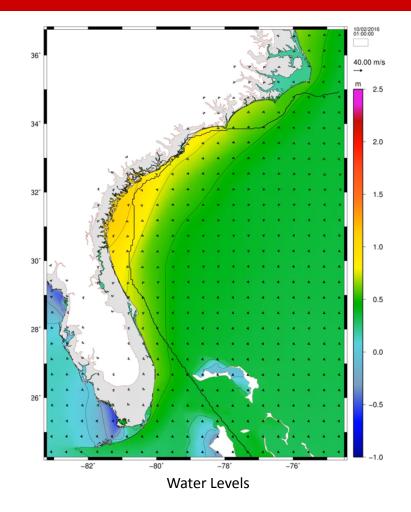

Hurricane Matthew

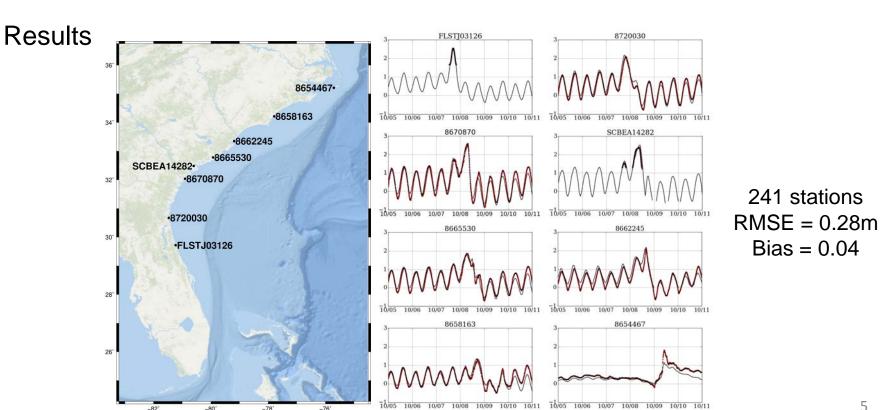
Introduction

- Category-5 storm
- Impacted the south-east coast of the U.S. during October 2016
- Shore-parallel storm
- Large variations in water levels lasting several days

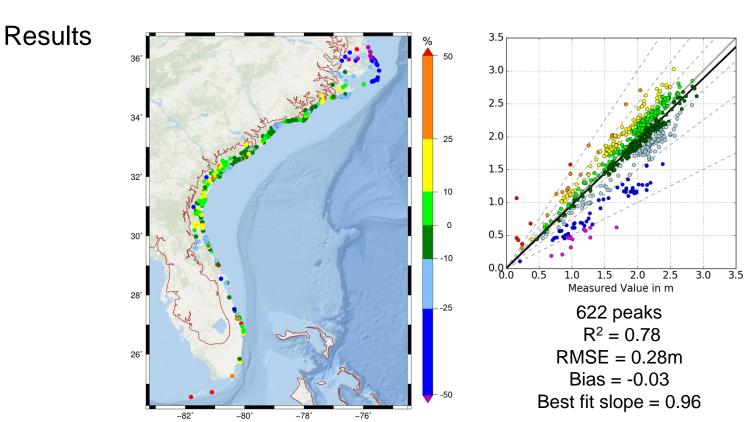

Source: NOAA

Hurricane Matthew


Methods


- ADCIRC + SWAN
- OWI Winds
 - Data-assimilated fields
- Offset surface
 - Spatially varying but temporarily constant
- HSOFS Mesh
 - 500m average coastal resolution

3


Results

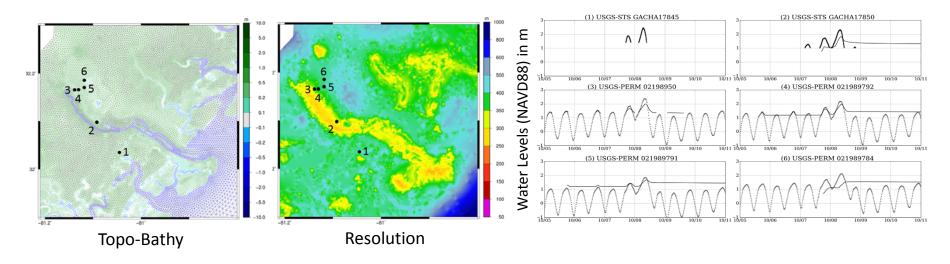
Hurricane Matthew

5

Hurricane Matthew

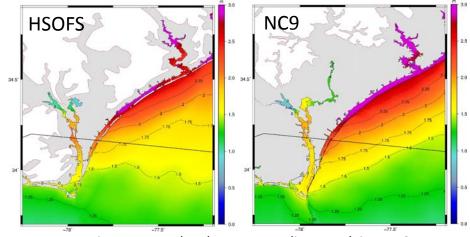
6

Hurricane Matthew


Conclusion

 Matthew's effects are well represented by the model even when applied on the relatively-coarse HSOFS mesh

A Thomas, *et al*. (2019). "Influence of Storm Timing and Forward Speed on Tide-Surge Interactions during Hurricane Matthew." *Ocean Modelling*, 137, 1-19, DOI:10.1016/j.ocemod.2019.03.004.


The Multi-Resolution Approach

- Need for Higher Resolution
 - 1. Experience from hindcasts of Hurricane Matthew

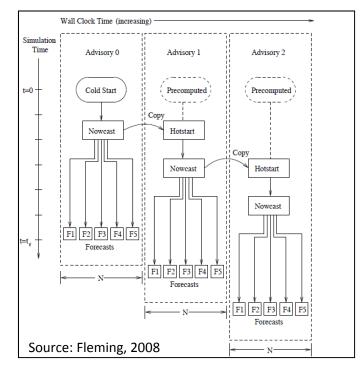
The Multi-Resolution Approach

- Need for Higher Resolution
 - 2. Forecasting during Hurricane Florence (2018)
 - HSOFS mesh was used when the storm was far away (up till Advisory 41)
 - As the storm approached NC coast, NC9 mesh was employed (starting from Advisory 42)

Maximum water levels corresponding to Advisory 58

The Multi-Resolution Approach

- Need for Faster Forecasts
 - 1. Ensemble Possibilities
 - For each advisory, there is uncertainty in the storm parameters , which translates directly into uncertainty in the predicted surge
 - SLOSH computes Probabilistic Storm Surge (P-surge) in real-time
 - Includes uncertainty in track/landfall location, forward speed, intensity, and historical errors
 - Results are approximately 30 minutes after full advisory release time
 - ASGS runs only a few variations (eg. veer-left, veer-right)
 - Faster simulations will allow for more scenario-testing, which can help in reducing uncertainties in the forecast results (Leutbecher and Palmer, 2008)


The Multi-Resolution Approach

- Need for Faster Forecasts
 - 2. Hurricane Bill (2015)
 - Made landfall in southeast Texas
 - When the storm was in Gulf, high-res mesh (6.7 million elements) for Texas was used
 - Tidal spin-up on this mesh even on 1120 cores at TACC, took 18 hours
 - By this time, the storm had already moved inland

The Multi-Resolution Approach

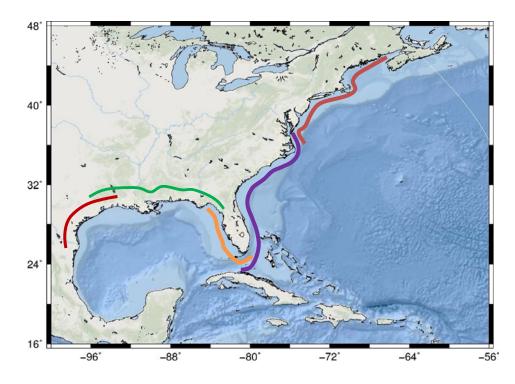
Current Forecasting Technique

- Save the state of the simulation right at the nowcast point (end of the hindcast)
- Reload this saved state during the next advisory cycle
- The system thus always builds on previous results
- The hot-starts have to be always done on the same mesh
- This prevents use of high resolution mesheswithout having to run tidal spin-up that take several hours of computational time

The Multi-Resolution Approach

Steps

- Use a relatively coarse resolution when the storm is far
- As the storm approaches the coastline, switch to a fine-resolution mesh without doing a cold-start
- Map results from coarse to the fine mesh and continue simulation on fine mesh

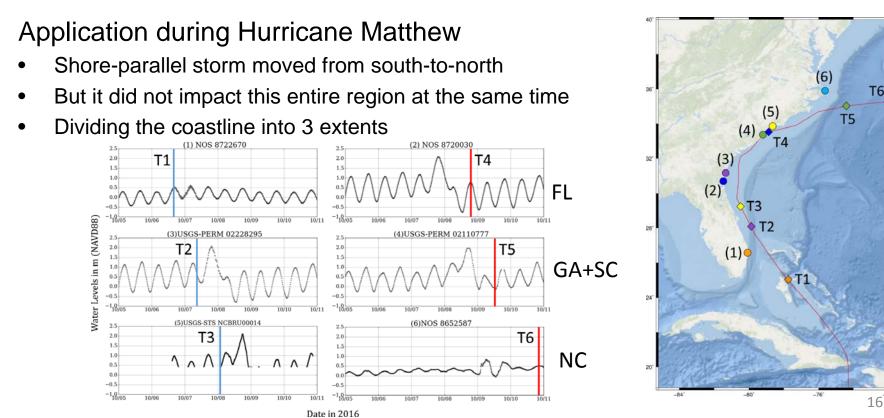

Main Objectives

- Reduce the computational load by using a coarser resolution mesh when the storm track is uncertain
- Increase the accuracy of predictions by using a higher resolution mesh as the storm approaches landfall
- Increase the simulation possibilities including ensemble generation during operational forecasting

The Multi-Resolution Approach

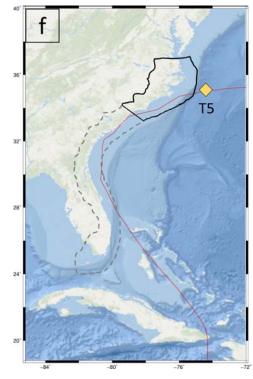
Long Term Goal

- Coarse Resolution Mesh
 - HSOFS (1.8 million vertices)
- Fine Resolution Meshes for the U.S. Gulf and Atlantic coasts
 - Each 3-4 million vertices
 - 1. Western Gulf
 - 2. Northern Gulf
 - 3. Eastern Gulf
 - 4. South and Central Atlantic
 - 5. Northern Atlantic



The Multi-Resolution Approach

Adcirpolate

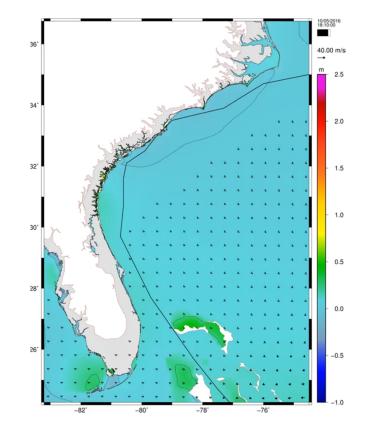

- A toolset for interpolating between meshes
- Developed by our collaborators at U.T. Austin
- Implemented via the Earth System Modeling Framework (ESMF)
 - Allows for parallel interpolation between unstructured meshes
- Interpolation is done bilinearly in region destination points
- Extrapolation is done for the remaining points with nearest source to destination
- Proper checks to take care of wetting/drying state of elements
- Convert the hot-start file from the coarse mesh simulation to a hot-start file for the fine mesh simulation

The Multi-Resolution Approach

The Multi-Resolution Approach

Application during Hurricane Matthew

The Multi-Resolution Approach

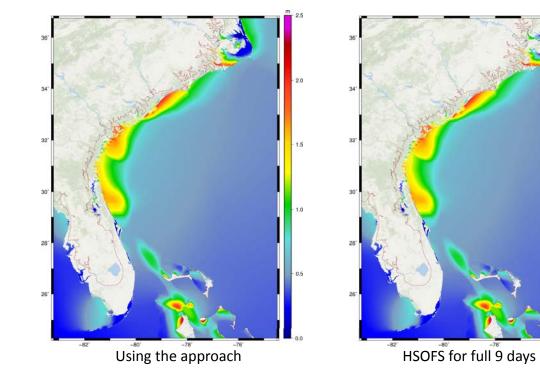

Application during Hurricane Matthew

Mesh	No. of Nodes	Days of Simulation	
HSOFS	1,813,443	4.5	
HSOFS_FL	804,964	0.75	
HSOFS_FL+GA+SC	942,427	0.75	
HSOFS_FL+GA+SC+NC	1,057,880	0.75	
HSOFS_GA+SC+NC	886,565	0.75	
HSOFS_NC	784,911	1.5	

The Multi-Resolution Approach

Application during Hurricane Matthew

• Video

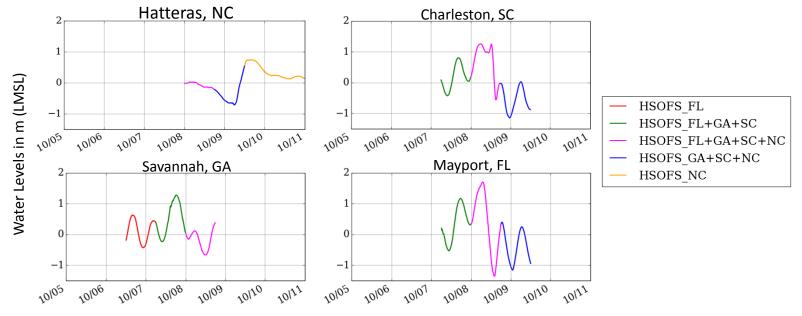


19

The Multi-Resolution Approach

Application during Hurricane Matthew

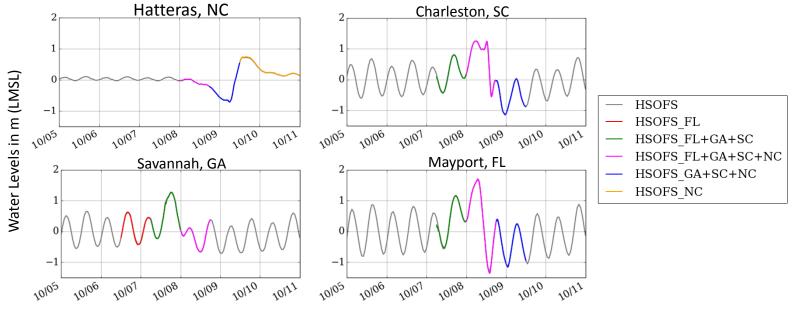
• Maxele


2.0

1.5

The Multi-Resolution Approach

Application during Hurricane Matthew


Time Series of Water Levels

The Multi-Resolution Approach

Application during Hurricane Matthew

• Time Series of Water Levels

The Multi-Resolution Approach

Application during Hurricane Matthew

Timing Comparison

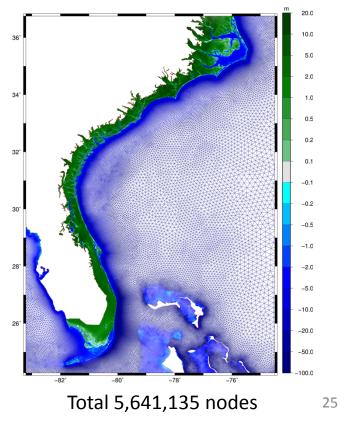
Mesh	No. of Nodes	Days	Run Time on 532 Cores (min)
HSOFS	1,813,443	4.5	34
HSOFS_FL	804,964	0.75	3
HSOFS_FL+GA+SC	942,427	0.75	3
HSOFS_FL+GA+SC+NC	1,057,880	0.75	4
HSOFS_GA+SC+NC	886,565	0.75	3
HSOFS_NC	784,911	1.5	6

Total = 64 mins HSOFS for the entire storm = 67 mins

The Multi-Resolution Approach

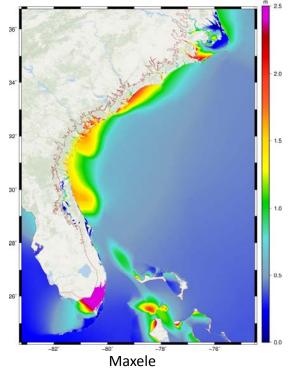
Application during Hurricane Matthew

Timing Comparison


Mesh	No. of Nodes	Days	Run Time on 532 Cores (min)
HSOFS	1,813,443	4.5	34
HSOFS_FL	804,964	0.75	3
HSOFS_FL+GA+SC	942,427	0.75	3
HSOFS_FL+GA+SC+NC	1,057,880	0.75	4
HSOFS_GA+SC+NC	886,565	0.75	3
HSOFS_NC	784,911	1.5	6

Total = 64 mins HSOFS for the entire storm = 67 mins

The Multi-Resolution Approach


Creating a High Resolution Mesh (FL to NC) ...

- By combining FEMA meshes
 - South FL
 - 2,249,093 nodes
 - North-east FL and GA
 - 2,968,735 nodes
 - East-central FL
 - 1,406,543 nodes
 - South Carolina
 - 542,809 nodes
 - North Carolina
 - 624,782 nodes
- HSOFS used in open-water regions

The Multi-Resolution Approach

Creating a High Resolution Mesh (FL to NC)

Thank You