North Carolina Center for Coastal Algae, People, and Environment

The NC C-CAPE: North Carolina Center for Coastal Algae, People, and Environment will investigate the health effects of various microcystin (MC) mixtures, and it will elucidate links between environmental and climatic drivers and harmful algal bloom (HAB) dynamics, MC congener composition, and toxin contamination in oysters and blue crabs. We will determine and the health effects of MC-mixtures on hepatic toxicity, NAFLD and hepatocellular carcinoma in model systems and humans. The Center’s Community Engagement Core will use the principles of data justice to address HAB exposure and prevention, where community members are experts, rather than objects of research, and have the capacity to conduct critical and systemic inquiry into their own lived experiences. The Administrative Core will provide efficient and effective fiscal and scientific leadership and promote interactions and collaborations across all Center components and beyond. Project 1 will advance our understanding of HAB dynamics and MC contamination in seafood, combining state-of-the-art in situ observing technologies and targeted field surveys. In addition, experimental work will elucidate trophic transfer of toxins in oysters and blue crabs. Project 2 will define how MC mixtures influence mechanisms of liver toxicity and resulting risk of adverse health outcomes in regulatory-relevant mammalian models as well as at-risk human populations. Project 3 will integrate highly diverse data sets and coastal circulation modeling within a probabilistic (Bayesian) modeling framework to elucidate environmental controls on MC distribution in water and seafood and assess MC exposure risk in a changing climate. NC C-CAPE will provide significant insight to guide efforts to implement effective monitoring approaches, inform guideline values for safe consumption of water and seafood, deliver predictive tools to assess emergent and future toxin exposure risk, and will leverage community engagement initiatives to fill data gaps and improve oceans and human health.

A Schnetzer, SM Belcher, BB Cutts, DR Obenour, T Ben-Horin, JC Dietrich, C Hoyo, NG Nelson, R Paerl. “North Carolina Center for Coastal Algae, People, and Environment (NC C-CAPE).National Institutes of Health, National Institute of Environmental Health Sciences, Centers for Oceans and Human Health 4: Impacts of Climate Change on Oceans and Great Lakes, 2024/02/01 to 2029/01/31, $6,913,382 (Dietrich: $467,482).

Conferences: Fall 2023

Poster: Fall 2023 Conferences

Efficiency Gains for Spectral Wave Models in Coupled Frameworks

We propose to modernize a spectral wave model to allow for more flexibility and efficiency within a coupled modeling framework. It is now commonplace for spectral wave models to run alongside other models for circulation and related coastal processes. These models can be coupled within sophisticated frameworks or at the source-code level. However, the widespread use of coupled models has also led to the identification of inefficiencies. Spectral wave models tend to be computationally expensive, and this cost can be amplified when they are coupled with other models. There are known methods for reducing the cost of spectral wave models, such as the nesting of nearshore and regional domains with offshore forcing from other sources, but these methods may have challenges in a coupled framework, such as the need to interpolate between nested domains. The coupling overhead can be (and has been) minimized, but there may be additional methods to further reduce costs without sacrificing predictive accuracy.

Thus, there are remaining research questions related to how to improve the performance of a spectral wave model in a coupled modeling framework. What are the tradeoffs when a spectral wave model is nested nearshore and receives boundary conditions from other sources? Over what period should the spectral wave model simulate as a storm approaches a coast? Can this research lead to guidance or best practices for coupled modeling applications? This project will focus on the Simulating WAves Nearshore (SWAN) model and SWAN+ADCIRC framework, but the project findings will be transferable to other spectral wave models and frameworks. We aim to improve the ability to nest spectral wave models in both space and time, via modernization of boundary conditions and a coupled model controller, and thus improve computational efficiency.

JC Dietrich. “Efficiency gains for spectral wave models in coupled frameworks.” Department of Defense, Broad Agency Announcement, Engineer Research and Development Center, Coastal Hydraulics Laboratory, 2023/09/22 to 2025/09/21, $191,353 (Dietrich: $191,353).

Poster: Undergraduate Research Symposium 2023

JT Voight, JS Knowles, TA Cuevas López, JC Dietrich. “How will Sea Level Rise affect the Storm Surge in Norfolk, Virginia?Undergraduate Research Symposium, North Carolina State University, 27 July 2023.

How will Sea Level Rise affect the Storm Surge in Norfolk, Virginia?

Continue reading

Conference: USNCCM 17