
ABSTRACT

CUEVAS LÓPEZ, TOMÁS. Prediction of Peak Water Levels during Tropical Cyclones with
Deep Learning. (Under the direction of Casey Dietrich).

Storm-driven flooding is a severe hazard for coastal communities and regions. Computa-

tional models can predict the combined effects of tides, winds, and flooding due to tropical

cyclones, including in real-time, but requirements for the models’ runtime make it challeng-

ing to consider simulations of the full range of storm uncertainty. To address this problem,

researchers have developed neural networks, trained on libraries of storm surge simulations,

to predict ensembles of coastal flooding in seconds. However, existing neural networks do not

consider the interaction between storm surge and astronomical tides nor storms of any du-

ration. Moreover, they are trained on datasets tailored to represent only extreme conditions.

We aim to develop a neural network to predict the peak total water levels for any storm at

specific locations along the North Carolina coast.

In this research, we implemented a neural network to predict peak values for total water

level (tides and storm surge) at multiple stations, considering astronomical tides and storm

tracks of any duration as inputs. To create the training library, we simulated 1,813 synthetic

tropical cyclones based on historical data in the North Atlantic Ocean, with a specific focus on

storms that affect North Carolina. These simulations used a full-physics hydrodynamic model

with variable spatial resolution of about 50 m near the coast. The outputs were downscaled

to grayscale images with a higher and constant resolution of 15 m, enhancing the flood

predictions by considering small-scale topographic features, and then used as training data

for the neural network. The many-to-one deep learning model predicts a single peak total

water level in time at multiple locations in space using time series of the offshore astronomical

tide and track parameters as inputs. We used the model to make probabilistic predictions

of peak total water levels for observed and perturbed tracks of several historical storms that

affected North Carolina.

We showed that the neural network performed well (with errors ranging from 8 to 43

cm) in predicting peak total water levels at nine locations in North Carolina. We applied

the neural network to make probabilistic predictions of peak total water levels for observed

and perturbed tracks of historical storms. For each storm, the neural network predicted at

nine stations for 101 storm scenarios (the true/historical storm and 100 perturbations) in

less than 10 seconds. The performance for the observed historical storms was similar to those

obtained in process-based simulations, but with a significant gain in computational runtime.



© Copyright 2024 by Tomás Cuevas López
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Chapter 1

Introduction

1.1 Motivation

Water pushed inland by tropical cyclones (TC) is a severe hazard for coastal communities.

As one example, in September 2022, the massive category-four TC Ian made landfall near

Cayo Costa in southwestern Florida with wind speeds higher than 70 m/s, generating more

than 4.5 m of storm surge – the rise of water levels due to the combined effects of wind

and atmospheric pressure. These high waters pushed inland and devastated the area. The

storm caused 66 deaths (Bucci et al. 2023) and damages of more than $112 billion (National

Centers for Environmental Information 2023). Over the last decade, TCs have caused more

than 750 deaths (Lau et al. 2022) and more than $480 billion in economic loss in the United

States (Smith et al. 2020). TCs are intensifying because of global warming (Knutson et al.

2020), increasing the risks of damage due to winds, precipitation, storm surges, and waves

(Emanuel 2021; Martinez 2020). Because of these severe hazards, providing accurate and

timely forecasts of TC-driven coastal flooding is critical.

Starting with the formation of TCs, which later can turn into hurricanes, the National

Hurricane Center (NHC) forecasts the storm’s track, intensity, and size, among other pa-

rameters, at least every six hours (Cangialosi 2023). To predict the storm’s effects on coastal

water levels and flooding, scientists and engineers use the forecasts issued by the NHC as

inputs to coastal hydrodynamic models. One of the most common tools for modeling storm

surge is the ADvanced CIRCulation model (ADCIRC; Luettich, Westerink, and Scheffner

1992; Westerink et al. 2008). ADCIRC solves the Generalized Wave-Continuity Equation for

the water levels and the vertically-integrated momentum equations for the current velocities

(Luettich and Westerink 2004). The equations are solved on an unstructured triangular mesh,

thus allowing a finer resolution where the coastal environment is more complex. ADCIRC
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outputs water levels and currents at every mesh vertex, allowing the generation of maps.

It has been validated for storms in the U.S. Atlantic and Gulf coasts (Cialone et al. 2017;

Vijayan et al. 2023). An example of ADCIRC for real-time forecasting is the automated

ADCIRC Surge Guidance System (ASGS; Fleming et al. 2008). The ASGS produces a local

storm surge prediction for each new NHC advisory (every 3 to 6 hours) to inform emergency

management agencies and decision-makers.

On a high-performance computing system (HPC) with multiple CPUs, an ADCIRC TC

simulation typically takes between 1 and 2 hours. The runtime is determined largely by the

spatial resolution applied to represent the coastal environment. Higher resolution gives more

accurate results, but it also makes the model more time-consuming. Given this, a trade-off

exists between spatial resolution or accuracy and the model runtime (S. C. Hagen, Westerink,

and Kolar 2000). Numerical modelers must balance the model producing accurate enough

predictions without compromising the runtime. As coastal areas become more urbanized

(Saginor and Ge 2017), modelers must represent a more complex coastal environment. In

addition, as the population is increasing (ibid.), more people would need to be evacuated if

needed. Thus, local storm surge predictions are expected at finer resolutions and in shorter

time frames.

This tradeoff can make it prohibitive to study the inherent uncertainties of the fore-

cast tropical cyclone parameters. Using a probabilistic framework — simulation of several

perturbations of the same storm — to account for the forecast uncertainties may help in

having more informative predictions and reducing the chances of under- or over-estimation

of the storm surge (Di Liberto et al. 2011; Flowerdew, Horsburgh, and Mylne 2009; Mel and

Lionello 2014; William J Pringle et al. 2023). For example, the ASGS simulates the most

probable or consensus forecast from the NHC and a few perturbations. Nevertheless, prob-

abilistic frameworks require many simulations to characterize the mean surge statistics and

account for uncertainties (Donald T Resio et al. 2007). In storm surge real-time forecasting,

addressing the uncertainty of the hurricane’s evolution with physics-based models such as

ADCIRC is challenging. The NHC uses another tool called Sea, Lake and Overland Surges

from Hurricanes (SLOSH; Jelesnianski, J. Chen, and Shafer 1992) in their Probabilistic Trop-

ical Storm Surge system (P-surge; Taylor and Glahn 2008). SLOSH makes several physical

simplifications (Joyce et al. 2019) and utilizes numerical domains of limited extension to

increase time efficiency.

An alternative to include the uncertainty of the track parameters is using surrogate

models, which have become extremely popular for storm surge prediction in the last decade

(Jia and Li 2012; Kyprioti, Adeli, et al. 2021; Kyprioti, Taflanidis, et al. 2021; Lee et al. 2021;

Plumlee et al. 2021; William J Pringle et al. 2023; Taflanidis et al. 2013; Tiggeloven et al.
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2021). Storm surge surrogate models are trained on large datasets and then, using data-

driven approximations, estimate water levels for any new storm. Surrogate models can be

soft-divided into two categories: statistical learning and deep learning models. In statistical

methods, each instance of the dependent variables, e.g. storm surge, is described by a set

of features or attributes (independent variables), e.g. wind speed, pressure, or eye position.

In contrast, in deep learning, the model can find the essential features within the storm

parameters that better explain each instance of storm surge.

Statistical learning models have been used widely (e.g. Jia and Li 2012; Kyprioti, Taflani-

dis, et al. 2021; Plumlee et al. 2021; William J Pringle et al. 2023; Taflanidis et al. 2013),

showing promising results in the prediction of storm surge. Kyprioti, Irwin, et al. (2023) im-

plemented a surrogate model using Gaussian Processes (GP; Rasmussen and C. K. Williams

2006) to predict time series of storm surge over a few thousand computation points, using the

Coastal Hazards System-North Atlantic (CHS-NA) database (Nadal-Caraballo and Melby

2014) as training data. The North Atlantic Comprehensive Coastal Study (NACCS) database

contains storm surge simulations for 1,050 synthetic tropical cyclones affecting the U.S. coast

from Virginia to Maine, computed with a process-based hydrodynamic model. However, the

simulations do not consider astronomical tides, and the synthetic storms are generated by

perturbing parameters within realistic ranges, which has the effect that subsets of storms

are similar, e.g. on parallel tracks. Even so, statistical learning methods can predict storm

surges with high accuracy and have benefits such as high interpretability, relatively easy

implementation, low risk of overfitting, and computationally cheap to train.

Deep learning (DL) models have become popular in coastal engineering applications in

recent years. Neural networks (NN) are algorithms inspired by how the human brain recog-

nizes, classifies, and predicts features within data. Compared to statistical learning models,

NN are more computationally expensive to train and harder to implement and interpret.

Nevertheless, they are better for learning complex non-linear relationships, handling high-

dimensional data, and generalizing to unseen data (Goodfellow, Bengio, and Courville 2016).

Some studies have predicted storm surge from time series of atmospheric variables at fixed

stations a certain number of hours ahead of time (Bai and Xu 2022; Chao and Young 2022;

K. Chen et al. 2022; S. Kim, Matsumi, et al. 2016; S. Kim, Pan, and Mase 2019; Tiggeloven

et al. 2021; Wang et al. 2021) with good results, but lacking geospatial information about

the storm track. Tiggeloven et al. (2021) implemented different NN architectures to predict

storm surge, without astronomical tide, globally. This work used storm surge observations

from 736 tide stations worldwide as the dependent variable and data from the ERA5 reanal-

ysis (Hersbach et al. 2020), with a spatial resolution of 0.25°, as the independent variable.

They extracted atmospheric variables at a centered box of 1.25°around the station. The box
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size prevents a prediction of the full storm, and atmospheric reanalysis are often unable to

resolve the TC inner core of the storm (Hodges, Cobb, and Vidale 2017; Schenkel and Hart

2012).

Other authors followed a hybrid approach, using the hurricane’s parameters as the in-

dependent variable and physics-based models’ output as dependent variables (e.g. Ehsan

Adeli et al. 2022; Ayyad, Hajj, and Marsooli 2022; Hashemi et al. 2016; S.-W. Kim et al.

2015; Lee et al. 2021; Pachev et al. 2023). The advantage of the hybrid approach is that the

independent variable considers the full geospatial information of the storm, whereas the dis-

advantage is that many physics-based model simulations are needed for training. There are

a few large libraries of storm surge ADCIRC simulations. Some examples are FEMA (2021),

Owensby et al. (2020), Nadal-Caraballo and Melby (2014), and Dawson et al. (2021). They

all focus on high-return period (extreme) storms for risk analysis, so they may not represent

the average conditions. Lee et al. (2021) implemented a 1D Convolutional Neural Network

(1D CNN; LeCun, Bengio, et al. 1995) combined with K-means clustering (Lloyd 1982; Mac-

Queen et al. 1967) and Principal Component Analysis (Wold, Esbensen, and Geladi 1987) to

predict peak storm surge (without astronomical tides) in the Chesapeake Bay using NACCS

as training data. The authors used a portion of the track to have sequences of the same

length as the only input. Pachev et al. (2023) implemented a two-step NN to classify the

output point as wet or dry and then to predict the peak total water level for the wet points.

This study considers the topography and bathymetry as inputs, but they removed the storm

track’s temporal component by considering the max, mean, and min values of the wind

vectors, wind magnitude, and pressure. Both studies showed good agreement between the

DL-predicted and ADCIRC values and highlighted that their models can predict in order

of seconds. This time frame allows to study the track uncertainty by predicting the storm

surge from several perturbations of the storm.

However, all the cited studies that combine deep learning techniques and physic-based

storm surge models were trained with datasets developed to characterize the flooding for

extreme events, because there is a limited number of large libraries of storm surge simulations,

and because these libraries have been developed to study the risk associated with high-

return period (extreme) inundation scenarios. The training data, especially when it does

not consider the full temporal information of the storms, limits the usage of this model

for emergency management because the NN must predict for any storm (extreme or not)

of any duration. As far as we know, there has not been an attempt to implement a NN to

predict peak total water level for storms of any duration, considering the astronomical tide as

input, and trained with a dataset tailored to represent the extreme and average conditions of

tropical cyclones. Considering the non-linear interaction between the astronomical tide and
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the storm surge is a key component because the effects of the peak storm surge happening

at high tide can differ drastically from those at low tide. Additionally, as far as we know,

there has not been an attempt to predict 2D maps of peak total water levels by using deep

learning. For this purpose, a library would need to be developed with flood maps as raster

images, and the NN would need to be designed to be extensible to handle images.

In this research, we propose a neural network for forecasting peak total water levels from

TC-driven coastal flooding for North Carolina, considering astronomical tides and storms of

any duration. The architecture is based on 1D CNN layers to handle the time evolution of the

storm. We used a synthetic database of tropical cyclones based on historical data to generate

the training library, with 10,000 years of information in the North Atlantic Ocean and more

than 100,000 storm tracks (Bloemendaal et al. 2020). We reduced the number of storms by

selecting a subset that may affect the North Carolina coast, and then we simulated the 1,813

storms using ADCIRC with random astronomical tides. Using an in-house and open-source

Python software called Kalpana (Kalpana 2018), we downscaled the peak total water level

to a higher and constant resolution (Rucker et al. 2021). Then, the library of high-resolution

maps of TC-driven coastal flooding was used to train the proposed neural network to predict

peak total water levels at any location. The NN needs only a time series of the following

parameters: distance from the storm’s eye to the prediction point, maximum wind speed,

minimum pressure, radius to maximum wind speeds, and offshore astronomical tides.

First, we show the results of a neural network capable of simultaneously making predic-

tions at multiple points, hereafter referred to as multitask model. The root mean squared

error (RMSE) for unseen storms ranged from 8 to 43 cm for all tested locations. We used

the trained model to make probabilistic predictions of the peak total water level for multiple

perturbations of historic storm tracks. Finally, using simpler versions of the neural network,

we assess its sensitivity to hyperparameters, data augmentation, and inputs. Although this

model predicts the peak water levels at specific coastal locations, it has been designed to be

extensible to flood maps in future work.
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1.2 Objectives

The general objective of this work is to develop a neural network capable of predicting

peak total water levels (tides and storm surge) from hurricane-driven coastal flooding with

minimal computational time. The specific objectives are listed below:

• Define a subset of storms within a dataset created with a probabilistic model that

represents the extreme and average conditions of tropical cyclones in North Carolina.

• Generate a training library of high- and constant-resolution peak surge maps using

ADCIRC and a downscaling technique.

• Train a deep learning algorithm with data extracted from the high and constant-

resolution peak surge maps library to make predictions for unseen storms.

• Use the neural network to predict historic storms’ peak total water levels and compare

the results with observations.

• Implement a probabilistic prediction framework by predicting peak total water level

for several perturbations of recent historic storms.

• Assess the neural network sensitivity to hyperparameters, data augmentation, and

inputs.
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Chapter 2

Background

In this research, we implemented a neural network to predict the peak total water levels (tides

and storm surge) of storm-driven coastal flooding. The neural network relies on datasets and

software from other sources, which are described in this chapter. We also describe our efforts

to modernize a Python software, which we will use later to increase the resolution of the

ADCIRC outputs in our NN development.

2.1 Study area

Coastal North Carolina (NC) is characterized by large estuaries with multiple river inputs,

wide sounds with shallow bathymetry, and limited connections to the open ocean (Figure

2.1). The system of barrier islands of North Carolina, known as the Outer Banks, is the

first line of protection from extreme sea conditions for coastal communities and ecosys-

tems. Beaches and dunes on barrier islands dissipate wave energy before the water reaches

the mainland. The barrier islands are low-lying land formations with elevations below 6 m

(NAVD88). The ground surface elevation does not increase quickly at inland regions, so the

entire state coast is prone to significant hurricane-driven flooding. In general, NC coastal

configuration is very complex so that flooding drivers may vary in different areas.

Coastal NC is described well by geospatial datasets, and this research will utilize a digital

elevation model (DEM) with topography and bathymetry with a 15 m resolution of the North

Carolina coast (Figure 2.1). The data was obtained from the NOAA Digital Coast (Oceanic

and Administration 2020), and it is part of the Coastal National Elevation Database (CoNED

USGS 2020). The raster is projected on the NAD83(2011) / UTM zone 17N coordinate

system. The unit of the elevation data is meters. The horizontal resolution of the DEM is

1 m, but in this research it was resampled to 15 m to reduce the file size and speed up the

computations.
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Figure 2.1: Digital elevation model (DEM) of coastal North Carolina. The background dig-
ital elevation model shows the coastal topography and bathymetry. Main NC rivers are
marked with diamonds, and NOAA tide gauges are shown with dots. These nine locations
will be used for making predictions with the neural network.
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The population and urbanization of coastal areas are increasing (Saginor and Ge 2017),

and most of the NC coast is low-lying and prone to flooding, even outside TCs (Kopp et al.

2015). Sea level rise (North Carolina Emergency Management 2014) and land subsidence

(Johnston et al. 2021) increase the risk of flooding, highlighting the importance of accurate

and real-time flood forecasting systems.

2.2 Tropical cyclones

2.2.1 Recent storms in North Carolina

Several tropical cyclones have affected the NC coast in the last 15 years. Irene (2011) formed

as a tropical wave on August 15 to become a tropical depression on August 20 as it ap-

proached the Lesser Antilles. Just after its initial landfall in Puerto Rico, Irene reached a

category-1 status. The storm intensified to category 3 as it moved toward the northwest, but

then started to weaken to a strong category 1 storm as it approached the North Carolina

coast. The NC coast started to be affected on August 26, and made landfall on August 27

near Cape Lookout. Along the North Carolina coast, the storm surge ranged between 0.8 to

2.1 m, with a maximum water level of 2.2 m observed at Oregon Inlet tide gauge (National

Oceanic and Atmospheric Administration 2011).

Arthur (2014) formed as a low-pressure system front of South Carolina on 28 June, then

it moved south to become more organized over the warm waters of east Florida. It reached

hurricane status on July 3 near Savannah, Georgia, and continued to strengthen, reaching

its peak intensity of 85 kt (category 1) on July 4 just off the NC coast. Arthur produced

significant storm surge flooding along the NC coast. At Oregon Inlet, a storm surge of 1.4

m was observed, whilst surges between 0.6 and 0.8 m were recorded at Wrightsville Beach,

Beaufort, Cape Hatteras, and Duck tide gauges (Berg 2015).

Matthew (2016) started as a strong tropical wave below 10°N latitude off the western

coast of Africa on September 23. It became a tropical storm on September 28 northwards

of Barbados in the Lesser Antilles of the West Indies (Stewart 2017). Matthew rapidly

intensified to a category-5 storm on the Saffir-Simpson (Saffir 1974) between September 30

and October 1. It first made landfall near Haiti on October 4 with a category-4 status and

then near the West End on Grand Bahama Island on October 7 as category 3. It covered the

distance between Florida and North Carolina, running shore-parallel. The flooding in the NC

coast varied significantly, with the highest levels recorded on the Outer Banks’ sound side.

The highest recorded water level at Cape Hatteras reached 1.8 m (Stewart 2017). In some

Barrier Islands, the storm caused geomorphological impacts such as severe dune erosion,
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formation of temporary inlets, and lowering and shoreward extension (Backstrom, Loureiro,

and Eulie 2022).

Florence (2018) developed off the west coast of Africa on 31 August 2018, and reached a

category-4 status on September 4. The shore-perpendicular track made landfall as a category-

1 storm near Wrightsville, NC, and moved slowly remaining near the coast for more than

a day. Florence produced more localized impacts, specifically in southeast North Carolina.

It was a major rainfall event, producing nearly 80 cm of rainfall in some areas. At landfall,

Florence caused a devastating storm surge on the open coast and within the sounds and

estuaries of NC. On the open coast, the estimated surge was between 1.5 and 2.5 m (Stewart

and Berg 2019), and between 2.5 to 3.5 m along the Neuse River inside the sounds.

Dorian (2019) formed as a tropical depression on August 24 near Barbados in the Win-

ward Islands and became a tropical storm later that same day. Dorian made landfall for the

first time over Barbados on August 27, and then, after passing over the U.S. Virgin Islands,

it started strengthening on its way to the Atlantic Ocean. It reached a category-3 status

on August 30 and continued its rapid intensification to make landfall as a category-5 storm

in the Bahamas. Dorian is the strongest hurricane in modern records to make landfall in

the Bahamas. After landfall, it weakened to re-strengthen back to category 3 over the Gulf-

stream. On September 5th, a NOAA buoy offshore of South Carolina recorded a pressure of

959.2 mb. It made landfall on U.S. continental territory over Cape Haterras on September

6 with a category-2 status. Catastrophic storm surge flooding occurred in northwestern Ba-

hamas; observations suggest water levels reached 2 m above ground level on the western end

of Grand Bahama Island. North of North Carolina, inundation levels of 0.6 m above ground

occurred (L A Avila and A. B. Hagen 2020).

Isaias (2020) became a tropical storm on July 30, when it was located southwards of

Puerto Rico. It made landfall for the first time in the Dominican Republic and then strength-

ened into a hurricane when its center was located offshore of the northern coast of Hispaniola.

Isaias continued to move northwestward to make landfall for the second time on 31 July as

the center crossed Great Inagua Island in the southeastern Bahamas and then passed just

west of the central Bahamas. It reached a peak category-1 intensity located south-southeast

of Nassau. On August 2, Isaias made its closest approach to Florida, but then it turned

toward the north-northeast to make the fourth and final landfall near Ocean Isle Beach,

NC, on August 4 with a category-1 status. Isaias produced a storm surge of 1 to 2 m above

the ground level along the southernmost NC coast. The highest inundation was observed in

Brunswick County, NC. Two sensors recorded water levels around 2.5 m NAVD88 at Ocean

Isle Beach and Oak Island, NC (A Latto and Berg 2021).
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Figure 2.2: Synthetic storms from the STORM database and based on the IBTrACS for
the North Atlantic Basin. The color of each track indicates the maximum category in the
Saffir-Simpson scale. The plot contains more than 100,000 synthetic tracks. The red polygon
on the U.S. Atlantic coast shows coastal NC.

2.2.2 Dataset of synthetic tropical cyclones

Although these historical storms were devastating to NC, the record of historic storms is less

than 40 years long, so it does not have enough storms to develop a large library (≥ 1,000) of

storm surge simulations. The results of many storm surge simulations are required to train a

neural network to predict peak total water levels. Datasets of synthetic tracks, created from

historical data, are preferred to develop large libraries of storm surge simulations because

they represent the past conditions of tropical cyclones with thousands of tracks.

The global synthetic tropical cyclone (TC) dataset created with the Synthetic Tropical

cyclOne geneRation Model (STORM), based on the International Best Track Archive for

Climate Stewardship (Knapp, Diamond, et al. 2018; Knapp, Kruk, et al. 2010), extends

the 38 years of real TCs to 10,000 years of synthetic TC activity. The algorithm follows a

probabilistic approach, and it is composed of three main steps. First, it samples the origin

of each real TC (IBTrACS, in this case), extracting information about their coordinates and

month. After that, STORM creates the synthetic storm by including perturbations to the

genesis coordinates. Finally, the algorithm adds the storm’s minimum pressure, maximum

wind speed, and radius to maximum winds. The latter steps are based on the probability
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distribution of the corresponding parameter on the real baseline dataset. Each storm (Figure

2.2) has information about the following parameters: year, month, TC number, time step

(3-hourly), basin, latitude, longitude, minimum pressure, maximum wind speed, radius to

maximum winds, category (Saffir 1974), landfall, and distance to land. For this study, we

focused on the North Atlantic Ocean basin because our goal is to predict storm surge in North

Carolina. The dataset provides enough information to characterize the possible scenarios of

storm surge in North Carolina generated by TCs.

2.2.3 Historical storms and their perturbations

In addition to synthetic TCs, we will also use the NN to predict for historical TCs, both

for their true effects and their possible perturbations. We used the CLIMADA Python pack-

age (Aznar-Siguan et al. 2023) to download the parameters of six recent historical storms

(Table 2.1) that affected the North Carolina coast and to create 100 perturbations of each.

CLIMADA is a software package and modeling framework designed for assessing and man-

aging the impacts of natural disasters and climate-related risks. It is designed to analyze

and simulate the potential consequences of various hazards such as tropical cyclones, floods,

earthquakes, heat waves, and other extreme weather events.

To create the perturbed tracks, CLIMADA uses the random walk method defined by

Kleppek et al. (2008). A one-dimensional Brownian motion (Wiener process) is applied to

create a slightly perturbed track ‘guided’ by the original track (Gettelman et al. 2017).

Random uniform values perturb the genesis point of the track in longitude and latitude.

Then, each segment between two consecutive points is perturbed in direction and distance,

with a correlation in time (Kropf et al. 2022). The wind speed and central pressure drop

change only when the perturbation makes landfall; a decay value depending on the TC

category is applied.

The historical and perturbed tracks will be input into the neural network to make prob-

abilistic predictions, and the results will compared to observed peak water levels.

2.3 Models

2.3.1 ADCIRC

ADvanced CIRCulation (ADCIRC) is a computational framework that predicts coastal cir-

culation and transport in 2D and 3D. It uses the finite element numerical method in space

over unstructured meshes and the finite difference method in time (Luettich, Westerink,
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Table 2.1: Historical storms considered in the probabilistic prediction application of the
trained deep learning model.

Name Year Max category
Irene 2011 3
Arthur 2014 2
Matthew 2016 5
Florence 2018 4
Dorian 2019 5
Isaias 2020 1

and Scheffner 1992). For the water surface elevation, ADCIRC solves the depth-integrated

continuity equation in the Generalized Wave-Continuity Equation (GWCE) form, while the

velocities are obtained from the 2D depth-integrated or 3D momentum equations. It ap-

plies the continuous-Galerkin finite-element method with linear C0 triangular elements to

discretize and solve the above-mentioned equations, allowing a variable resolution so that a

complex area can be represented with higher resolution. ADCIRC can be run in parallel with

multiple CPUs on HPC systems; it is efficient and scales well (Dietrich, Zijlema, et al. 2011;

Tanaka et al. 2011). The model can be forced with astronomical tides at the offshore bound-

ary, wind and pressure fields to represent tropical cyclones, and river discharge upstream in

estuaries. Dietrich, Trahan, et al. (2012), Hope et al. (2013), and Sebastian et al. (2014) have

shown extensive validations of this model along the U.S. Gulf and Atlantic coasts.

ADCIRC simulations can have various applications, including risk analysis. ADCIRC has

been used to develop extensive libraries of storm surge simulations, such as the FEMA flood

map program (FEMA 2021), the South Atlantic Coast Comprehensive Study (Owensby et

al. 2020, SACCS), and the North Atlantic Coast Comprehensive Study (U.S. Army Corps

of Engineers 2015, NACCS). These libraries have been used to characterize tropical cyclone-

drive flooding for high return period events. Another example is the automated real-time

ADCIRC Surge Guidance system (ASGS; Fleming et al. 2008). This system was developed to

provide local storm surge predictions for planning decisions that must be made when storms

approach the coast and make landfall. Hindcast simulations is another possible application

of ADCIRC. In this case, observed storm tracks are used to force the model. The goal of

hindcast simulations can be model validation or to better understand the coastal hazards

produced by the storm. Thomas et al. (2022) showed validations of high water marks and

water level time series for Matthew in 2016 over the entire South Atlantic Bight, and for

Florence in 2018 specifically in North Carolina. Extending the floodplain coverage for large

storms like Matthew in 2016 and refining the mesh resolution over the floodplains, barrier
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islands or estuaries improves the model performance (Thomas et al. 2022).

For the atmospheric forcing to ADCIRC, the wind and pressure fields can be obtained

from reanalysis products or computed from the storm track using parametric models. In this

study, we will use ADCIRC to simulate a subset of tracks of the dataset obtained using

STORM based on the IBTrACS for the North Atlantic Basin. To include the atmospheric

forcing of the TC, we will use the parametric Holland symmetric vortex model (Holland

1980) because the wind and pressure fields can be generated using the information available

in the dataset of synthetic TCs.

2.3.2 Unstructured mesh

A key input to ADCIRC is the unstructured mesh to represent the coastal environment.

One example is the mesh from the Hurricane Surge On-Demand Forecast System (HSOFS;

Riverside Technology and AECOM 2015), developed for doing surge and tide predictions

throughout the U.S. Gulf and Atlantic coasts. HSOFS resolution near the coastline is around

500 m, which is insufficient to represent a complex coastal environment such as the NC bar-

rier island system. A NC-specific example is the NC9 mesh (Blanton and Luettich 2008)

developed for the FEMA flood insurance studies (FIS). NC9 is composed of 1,230,430 trian-

gular elements and 622 946 nodes. Inland areas are only resolved in NC, concentrating 90%

of the elements around the state, but the mesh extends across the Western North Atlantic

Ocean, the Gulf of Mexico, and the Caribbean Sea. Element sizes range from 15 to 25 m near

Oregon Inlet and Cape Fear River and then increase to 100 to 200 m on barrier islands and

other inlets. The resolution increases in the Pamlico and Albemarle Sounds up to 1500 m in

open water and then from 10 to 100 km in the deep Atlantic Ocean. Blanton and Luettich

(2010) and Cyriac et al. (2018) showed extensive validations of ADCIRC simulations using

the NC9 mesh. Then Thomas et al. (2022) showed the benefits of increasing the floodplain

coverage. The authors merged five meshes created for the FIS in NC, South Carolina, Geor-

gia and northeast Florida, central Florida, and south Florida to simulate hurricanes Mathew

(2016) and Florence (2018). The resulting SAB mesh had 5,584,241 vertices and 11,066,018

elements, resolving the floodplains from Florida to North Carolina.

Although those meshes are well-validated for storm simulations in NC, they were devel-

oped from older datasets for coastal topography and bathymetry. For this study, we adapted

the SABv3-60m mesh developed by Woodruff (2023). This mesh was designed using Ocean-

Mesh2D (Roberts, W J Pringle, and Westerink 2019) and is a ‘forecast-grade’ mesh, i.e. the

computational burden of running a storm surge simulation on this mesh is similar to that

of using a mesh used in real-time forecasting but is computationally expensive and includes
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high-resolution inland elements outside our study area. It has about 7 million elements and

3.5 million vertices, with the smallest resolution of about 60 m, which is adequate to resolve

most of the coastal topographic and bathymetric features, such as barrier islands, estuaries,

major man-made channels, and inlets. This mesh will be adapted to the storm simulations

in this research, as described later in Subsection 3.2.1.

2.3.3 Kalpana

During hurricanes, emergency managers expect storm surge predictions on small scales (e.g.

meters) that cannot be resolved efficiently with process-based models like ADCIRC. One

option to increase the resolution of the predictions without increasing the model runtime is

using a downscaling method as a post-processing step. Kalpana is a set of Python scripts

to visualize ADCIRC outputs using geospatial vector formats or Google Earth KMZ files

(Cyriac et al. 2018) and to downscale ADCIRC maximum water elevations (Rucker et al.

2021).

Kalpana has two methods for increasing the resolution or downscaling the peak water

level: static and head loss. In this study, we focused on the static method because it is faster,

requires less input to be applied, and produces accurate outputs (ibid.). The static method

interpolates the maximum water level from the unstructured mesh to a higher-resolution

and structured raster and then expands it horizontally until it intersects the ground surface

(Figure 2.3a). The downscaling increases the resolution, allowing the storm surge to inundate

areas with ground elevations below the water level. Kalpana can incorporate small-scale

topographic features to reduce the extension of the peak storm surge (Figure 2.3b). The

downscaling includes the topographic feature and shrinks the storm surge until the water

level intersects it.

Kalpana starts by transforming the outputs of ADCIRC into a geospatial vector file. For

this, the user must define a set of water level contours for Kalpana to bin the ADCIRC

results into this range. Then, each area defined by two contiguous contours is transformed

into a polygon. This process is done in serial, so the code takes longer when more water level

contours are requested. The geospatial vector file is then rasterized with the same resolution,

extent, and projection of the user-provided downscaling raster. To simplify the explanation,

we call this the ADCIRC raster. The downscaling raster input must be a topography and

bathymetry DEM of the site of interest with a higher resolution than the ADCIRC mesh.

For the static downscaling method, Kalpana applies nearest neighbor interpolation to fill

the dry (null) cells of the ADCIRC raster with the values of the closest non-dry cells. The

interpolation outputs two rasters: one is the interpolated water levels, and the other with
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(a) Expansion of the inundation

(b) Reduction of the inundation

Figure 2.3: Schematized cross-shore profile of a portion of the model domain, with examples
of downscaling using Kalpana’s static method: (a) The water level is extended horizontally
until it intersects the ground level. The upper panel shows the extent of the water level
before Kalpana, and the bottom panel shows the inundation extent after downscaling. (b)
The water level extent is reduced since a small topographic feature higher than the water
level is included. The upper panel shows the extent of the water level before Kalpana, and
the bottom panel shows the inundation extent after downscaling.
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the distance from each pixel to the nearest non-dry cell. Both rasters have the same extent,

resolution, and projection.

Then Kalpana removes all the filled cells on the interpolated ADCIRC raster, where the

corresponding cell, on the distance raster, is larger than a user-defined input. Kalpana also

corrects the inundation by removing the water from the cells where the water level is below

the ground surface elevation. This is done by comparing the downscaling raster with the

distanced-corrected ADCIRC raster. The last two steps may create isolated groups of cells

or clumps not hydraulically connected to the ocean, which is not physically possible. Kalpana

removes all the hydraulically disconnected clumps with an area below a user-defined threshold

to correct this. The two user-defined inputs mentioned in this paragraph are unrelated to the

mesh resolution and can vary from site to site. Thus, the benefit of using Kalpana is that it

allows small-scale topographic and bathymetric features to be considered without increasing

the model run time.

2.3.4 Upgrades to Kalpana

The static downscaling method and the visualization tools were modified for this study to

make the code faster and compatible with Python 3 (Van Rossum and Drake 2009) and

modern programming standards. Our contributions to the software modernization are:

A. Convert ADCIRC mesh and maximum water levels to vector format. Maximum water

levels are binned, plotted as closed contours, and then saved as a geospatial vector

format. In previous versions of Kalpana, each closed contour or polygon was computed

and written in serial, but in the updated version, the computation of the polygons was

parallelized, and the writing was optimized using GeoDataFrames. The mesh is also

exported as a GIS shapefile, with the element’s representative size as an attribute.

B. Initialize the GRASS GIS environment (GRASS Development Team 2022). In the

previous version, the downscaling DEMs were loaded in serial, but the new version

supports loading DEMs in parallel and has more flexibility regarding the coordinate

system of the input files. Kalpana also loads and rasterizes the ADCIRC maximum

water level shapefile, and in the new version, it also loads and rasterizes the mesh

shapefile.

C. Static grow. The spatial interpolation used in the new version follows the same proce-

dure as the previous version, but there are changes to how the growing distance is lim-

ited. Kalpana’s original version removed all the cells interpolated beyond a threshold.

This threshold was a user-defined input, and it was not related to the mesh resolution.
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We incorporated the mesh resolution in the new version, removing all cells interpo-

lated beyond n triangular elements, where n is a user-defined input. For this research,

we used n = 1, i.e. cells are expanded horizontally by no more than the size of one

triangular element.

D. Grown raster post-processing. The original and the new versions of Kalpana remove the

wet cells where the ground surface is above the water level. Nevertheless, how they deal

with the hydraulically disconnected cells changed drastically. Kalpana’s original version

removed all the clumps with an area smaller than a given threshold. This threshold is a

user-defined input, and it is not related to the mesh resolution. Kalpana’s new version

removes the disconnected clumps if they don’t intersect the non-interpolated ADCIRC

maximum water level shapefile wet area.

In addition to these steps for the downscaling process, Kalpana was modernized by updating

the code to Python 3.9 (or higher). It was written in Python 2.7, which was deprecated

in January 2022. The old version of the Kalpana was a single Python script with nearly

2,000 lines of code. The new version is highly modularized, so now Kalpana is a set of

Python modules with traceable functions. In the previous version, only GRASS GIS version

7.8 was supported; now, GRASS GIS versions 8.2 and later are supported. Lastly, the new

version of Kalpana can be used in Windows and Linux, whereas before it was only supported

on Linux. Kalpana is publicly available on the North Carolina State University Coastal &

Computational Hydraulics Team GitHub (Kalpana 2023). The repository has a detailed

instructional guide to install and run the software. The steps for the downscaling process are

described in further detail in the remainder of this subsection.

A. Convert ADCIRC mesh and maximum water levels to vector format

The first step in the downscaling process is to transform the ADCIRC-predicted peak water

levels from netCDF format to a GIS vector data file. To convert the ADCIRC output to a

geospatial vector format, we make a contour plot of the maximum water level. The contours

are then converted to polygons and then exported to a GIS shapefile.

The ADCIRC maximum water level output has a single value for each mesh vertex, i.e.

a two-dimensional cloud of points. It has no time dimension because ADCIRC only saves

the maximum water level for each mesh vertex. We computed isolines by binning the water

level on a set of user-defined values. Then, we formatted the area defined by two consecutive

isocurves as polygons. This is an iterative process. The script creates the polygon formed

for each pair of adjacent contours. We parallelized this iteration, so the time to produce the

maximum water level isolines is less dependent on the number of levels specified by the user.

18



After that, we grouped all the polygons using a two-dimensional tabular format, storing the

geographic information of geometry objects. Kalpana accepts more user-defined inputs to

change the vertical unit (from meters to feet, or vice-versa) of the water level isolines and

to change the data’s coordinate reference system (CRS). Finally, the data is saved as a GIS

shapefile.

The ADCIRC mesh is also exported and saved as a GIS shapefile. The mesh elements are

constructed from the information in the ADCIRC output and formatted in tabular format.

Each mesh element is stored as an individual polygon (triangle). We also computed extra

information like each element’s area, perimeter, and minimum face length.

B. Initialize the GRASS GIS environment

Most geographic operations within Kalpana use GRASS GIS (GRASS Development Team

2022). It is necessary to create a GRASS location, which is a directory that houses all

geospatial data and information associated with a specific geographic area. It represents this

area with its own coordinate system, map projection, and related data, enabling users to

perform geospatial analyses efficiently and manipulate geographic information within that

area. This is a key step in Kalpana’s workflow because all geospatial layers loaded into the

location share geographical information, such as resolution and extension in case of rasters.

The first step to run the static downscaling method is to choose the downscaling DEM.

This raster must have topography and a finer resolution than the ADCIRC mesh. It can have

bathymetric data, but it is not mandatory. The second step is to load the downscaling DEM

to the GRASS location. Kalpana accepts DEMs in multiple formats, even non-georeferenced

files. The user can also provide multiple DEMs. In this case, Kalpana processes all the files

and patches them together as a single raster in parallel to accelerate the process.

The next step is to load the ADCIRC maximum water level shapefile into the GRASS

location. This file is rasterized, interpolating the maximum water level into the same extent

and resolution of the downscaling DEM. We call it ADCIRC raster to simplify the expla-

nation. Finally, we load the mesh shapefile and interpolate the element’s representative size

(perimeter / 3) into the same extent and resolution of the downscaling DEM. We call it

mesh raster to simplify the explanation. Each cell of the mesh raster contains the represen-

tative size of the mesh element it lies in (Figure 2.4). In this example, the background DEM

has a constant resolution of 15 m. The color of the mesh shows the representative size of

each element. For example, all the DEM cells inside an element with a size of 100 m have

a cell value of 100 m. The same applies to larger elements. This DEM is used in the next

downscaling step.
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Figure 2.4: The upper panels show the SABv5 mesh with successive zoom-in views
(left/wide to right/zoom) to NC and Oregon Inlet, with contour colors based on the mesh
resolution. The lower panel shows the ADCIRC mesh in vector format over the raster with
the elements’ representative size, again with the contour colors based on the mesh resolu-
tion. Each raster cell is outlined in white. Each raster cell has a value of 1/3 of the element’s
perimeter it lies in. All the cells inside one element have the same value.

C. Static grow

For this step of the downscaling process, Kalpana applies nearest neighbor interpolation

using the r.grow.distance (Larson and Clements 2008) GRASS GIS tool to spatially expand

the maximum water level on the ADCIRC raster. The algorithm fills all the null DEM cells

(dry cells) beyond the flooding extent with the nearest non-null cell value. It also creates a

new channel in the raster — a new raster attached in the third dimension — that has the

distance to the nearest non-null cell used to fill each missing value. We will refer to the filled

cells in the peak surge raster as grown cells, to the distance to the nearest non-null cell as

growing distance, and to the new raster as distance raster.

Then, to limit the flooding expansion, Kalpana compares the distance raster cells’ value
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Figure 2.5: Conceptual explanation of the r.grow algorithm. Panel (a) shows the ADCIRC
maximum water level raster (color) at the same resolution as the underlying topo/bathy
DEM (greyscale). Panel (b) shows the expanded raster using the Grass GIS r.grow algorithm.
Panel (c) shows the result of correcting the elevation with the underlying topo/bathy DEM.
The grown cells are retained only if their water level exceeds the ground elevation. Adapted
from Rucker et al. (2021).

to the mesh raster. It keeps only the grown cells where the growing distance is smaller

than the mesh raster cells’ value times a user-defined factor, which we defined as the grow-

ing factor. This step assumes that the gradient in the element’s size is small for neighbor

elements. Assuming a growing factor of unity, Kalpana removes all the grown cells with a

growing distance larger than the mesh raster cells’ value, i.e. the maximum spatial expansion

corresponds to one mesh element.

The limit in the flooding expansion is one of the key differences in the new version of

Kalpana. In previous versions, all cells expanded beyond a given threshold were removed. It is

difficult to guess a correct value for this threshold beforehand without comparing Kalpana’s

outputs with measurements or an ADCIRC simulation with a much higher-resolution mesh.

Furthermore, this threshold can vary within the ADCIRC domain. In the updated version,

we decided to relate the threshold to the mesh resolution so it directly relates to a simulation

parameter and can be spatially variable.

D. Grown raster post-processing

The first post-processing step is removing the grown cells with the ground elevation above the

maximum water level. Some cells with a ground level above the water level may be wet for two

reasons: (1) the mesh resolution is not fine enough to represent the bathymetric/topographic

features, and (2) the expansion of the peak surge described in the previous step only takes

into account horizontal distance, so water can be ‘placed’ in high elevation cells. To remove

these ‘fake’ wet cells, Kalpana compares the water level of each cell with the ground level

in the downscaling DEM and keeps only the cells where the water level is above the ground

level (Figure 2.5).
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Figure 2.6: Workflow to remove hydraulically isolated cells. Panel (a) shows an ADCIRC
maximum water level for a portion of the NC coast. Panel (b) shows a zoom-in view of a
part of Pamlico county. Panel (c) shows the extent of the ADCIRC maximum water level in
shaded white and the different clumps in randomly assigned colors. The large cyan clump
corresponds to the Neuse River, which is hydraulically connected to the ocean. Panel (d)
shows all clumps intersecting the ADCIRC maximum water level extent in green and the
disconnected clumps that do not intersect in red. Finally, panel (e) shows the downscaled
maximum water level raster corrected by hydraulic connectivity.
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Figure 2.7: Final result of the downscaling process with Kalpana’s static method. The
smaller inset panel shows the maximum water level for a portion of the North Carolina
Coast. The main panel shows a close-up view of the Neuse River to appreciate the down-
scaling effect. The red line delineates the wet/dry boundary of the raw ADCIRC peak surge.
The maximum water level is expanded beyond the ADCIRC flooding extent shown in red,
with a much higher resolution than the mesh. The dashed cyan circle points to a dry area
inside the ADCIRC flooding extent corrected by ground surface elevation.

Removing the ‘fake’ wet cells may create clumps or groups of isolated cells not hydrauli-

cally connected to the ocean. In its previous version, Kalpana removed all the hydraulically

disconnected clumps with areas smaller than a given threshold. This threshold was hard-

coded and unrelated to any physical or numerical parameter of the ADCIRC simulation.

Kalpana’s new version finds all disconnected groups of cells or clumps, overlays them with

the flooding extent of the ADCIRC maximum water level shapefile, and removes the ones

that do not intersect (Figure 2.6). This step is another major difference from the previous

version of Kalpana. It removes a hard-coded input and allows Kalpana to downscale the

maximum water level in the presence of flow-blocking structures such as levees.

The final output of Kalpana’s static method is a raster flood map at the same resolution

of the underlying DEM (Figure 2.7). Kalpana increases the resolution outside the ADCIRC
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wet/dry boundary by inundating portions of originally dry elements. Also, in some parts

inside the ADCIRC wet/dry boundary, Kalpana removes some initially wet cells with a

ground level higher than the maximum water level.

2.4 Deep learning

Artificial intelligence (AI) is a field of computer science focused on creating systems that

can perform tasks that require human-like intelligence. It involves developing algorithms

and models that enable machines to analyze data, recognize patterns, and make decisions or

predictions. AI encompasses various subfields like machine learning (ML), where algorithms

learn from data, and deep learning (DL), which uses neural networks to simulate how the

human brain processes information.

Deep learning focuses on developing and utilizing artificial neural networks inspired by

the structure and functioning of the human brain’s neural connections (Géron 2022). These

neural networks contain multiple layers of interconnected nodes, known as neurons, arranged

hierarchically. Each layer processes and extracts different levels of abstraction from the input

data, enabling the network to learn patterns, features, and representations through exposure

to large amounts of data. The earlier efforts in developing deep learning systems go back

to the 1940s, but the technique didn’t gain much popularity then due to its lack of ability

to solve complex problems. In 2006, Hinton, Osindero, and Teh (2006) published a deep

neural network to recognize handwritten digits that performed with incredible precision

(> 98%)(Géron 2022), calling the technique ‘Deep Learning’. After this, deep learning gained

popularity and has been applied in many fields, storm surge one of them.

There are multiple production-ready Python deep learning frameworks. For this research,

we used TensorFlow (Mart́ın Abadi et al. 2015), a widely used open-source framework for

deep learning and machine learning. Developed by Google Brain, TensorFlow offers a versatile

platform that simplifies the creation, deployment, and scaling of machine learning models,

particularly deep neural networks.
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Chapter 3

Methods

This chapter presents the implementation of a neural network to predict the peak total water

level of storm-driven coastal flooding using the storm parameters and the astronomical tides

as predictors. Figure 3.1 outlines the workflow to develop the deep learning model. It has

four main steps: (1) selecting a dataset of synthetic tropical cyclones that could affect our

study area; (2) generating a training library of process-based model simulations; (3) building,

training, validating, and testing the neural network; and (4) testing the performance of

the neural network with historical storms. We explain each step in detail in the following

subsections.

Figure 3.1: Schematic of the workflow followed to develop the deep learning model.

3.1 Step 1: Data collection

In this section, we describe the process of defining a dataset of synthetic tropical cyclones

that represents the average and extreme conditions for North Carolina (NC). This dataset

will be used in the next step as storm forcings to process-based model simulations to develop

a training library.
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3.1.1 Selection of impactful storms for NC

The STORM dataset of synthetic tropical cyclones has 10,000 years of data with more

than 100,000 storms (Bloemendaal et al. 2020). Process-based model simulations of these

storms would be both impractical, given the high requirements for computing resources, and

unnecessary, given that many storms do not pass close to or cause flooding of the NC coast.

Instead, we identified a subset of storms that have the potential to cause flooding in our

study area.

We assume that, if a storm’s hurricane-strength winds (stronger than 33 m/s) ever affect

the NC coast, then that storm is ‘impactful’ – it has a reasonable likelihood of generating

flooding. Thus each storm must be analyzed to determine if its hurricane-strength wind field

ever overlaps with our study area. We created a polygon covering the main rivers, estuaries,

and sounds of NC. Then we searched for storms that overlapped this polygon at any point in

their track history. For each storm and time snap, we used the parametric Holland symmetric

vortex model (Holland 1980, Eq. 3.1) to examine the approximate size of the storm’s wind

field. We found the distance to the 33 m/s isotach, which is the lower bound of the category

1 in the Saffir-Simpson scale (Saffir 1974). We solved Eq. 3.1:

V (r) = Vmax

√√√√(Rmax

r

)β

exp

(
1−

(
Rmax

r

)β
)

(3.1)

to find the radius r corresponding to a wind speed V (r) = 33 m/s, by using Rmax as the

radius to maximum wind speed Vmax for the specific time snap, and β = 1. We defined the

storm’s ‘area of influence’ as a circle generated by the storm as the center and r as the radius.

After finding the storm’s area of influence for each time snap of its track, we computed the

convex hull of all circles. We considered as impactful the storms with an area of influence

intersecting coastal NC, for a total of 3,626 storms.

This process can be illustrated for a single storm from the dataset (Figure 3.2). This

storm is initiated in the Atlantic, tracks just north of Puerto Rico and Hispaniola and east

of the Bahamas, and then moves parallel to the U.S. Atlantic coast. The storm does not

make landfall in the continental U.S. but it is a large (category 5) storm, and thus its wind

field does overlap with the North Carolina coast. Because of this overlap, we consider this

storm to be impactful and include it to be simulated for our training library.
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Figure 3.2: Definition of a storm’s area of influence using the parametric Holland symmetric
vortex model. Storm center positions are colored to indicate the category of the TC, the
shaded red area corresponds to the area of influence, the red polygon represents the coastal
North Carolina area, the red star shows the genesis location, and the black lines perpendicular
to the track enclose the simulated portion.

3.1.2 Postprocessing of impactful storms for NC

To reduce the amount of computations required with ADCIRC, we removed and shortened

storms from this data set. We did not consider storms weaker than hurricane strength (Saffir

1974) in their closest position to our study area. When the storms are close to landfall, they

typically experience a decay in their wind speed. The category distribution is shifted and

skewed toward weak storms in the tracks’ closest position to the NC coast. We removed 1,792

storms with wind speeds below 33 m/s in their closest distance to NC. We also discarded

storms shorter than 24 hours.

We also shortened storms to simulate only the portion in which they were impactful

to the North Carolina coast. Before the shortening, the storms’ duration ranged from 1.38

to 28.25 days, with an average and standard deviation of 6.76 and 3.72 days, respectively.

We assumed that the peak storm surge would occur within the period defined by four days

before the storm’s area of influence overlaps coastal NC for the first time and one day after

it overlaps coastal NC for the last time. Some storms could be shortened significantly. For

example (Figure 3.2), several days of the storm can be discarded when the storm is far away

in the Atlantic Ocean. The track-perpendicular black line over Haiti shows the beginning of
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Figure 3.3: Subset of shortened impactful storms to be simulated. The line colors indicate
the maximum category of the TC, and the red polygon represents the North Carolina coast.

the track portion to be simulated, and the black line in front of Massachusetts shows the

end. For this storm, the duration was decreased from 6.75 to 4.88 days.

We identified a subset of 1,813 storms as impactful in North Carolina (Figure 3.3). These

storms have durations ranging from 1.25 (30 hours) to 9.8 days (235 hours). This assumption

allowed us to decrease the number of hours of storm to simulate by 37%, from 883,395 to

554,760 hours (Figure 3.4h).

The dataset has a large variance with many dissimilar storms. The minimum value for

maximum wind speed is slightly below 33 m/s, whereas the maximum value for maximum

wind speed is 83.5 m/s. The track with the largest maximum wind speed is storm 15; the

peak wind speed and the lowest pressure (≈ 840 hPa) occur when the storm is at its closest

distance to the NC coast. This storm is an outlier because typically TCs weaken when

they approach the coast; the maximum wind speeds tend to decrease (Figures 3.4a and

3.4e), thus the category distribution shifts to lower values (Figures 3.4c and 3.4g) and the

pressure increases (Figure 3.4b and 3.4f). Most of the considered tracks are landfilling storms.

Bypassing storms are underrepresented, being only 5% of the selected tracks. Considerable

variability exists in the genesis location; some originated in the Gulf of Mexico and the

Caribbean, but most are formed in the mid-Atlantic. Most storms approach NC from the

southwest.
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Figure 3.4: Histograms of track parameters. First row: wind speed at time snap of minimum
pressure, minimum pressure, maximum category, and landfall flag. Second row: wind speed,
pressure, and category at minimum distance to NC. Third row: genesis coordinates and
coordinates of the storm’s eye position with minimum distance to NC.
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3.2 Step 2: Training library

The second step in the workflow is to develop the training library of process-based model

simulations. This section describes the process of setting up and running the simulations

using ADCIRC.

3.2.1 ADCIRC simulations

We automated the setup of each individual simulation using Python. An ADCIRC simulation

has four main input files: (1) the unstructured mesh file (fort.14), (2) the nodal attributes

file (fort.13), (3) the model parameter and periodic boundary condition file (fort.15), and

(4) the meteorological forcing file (fort.22).

Unstructured mesh

The unstructured mesh is used to represent the coastal environment and solve the model’s

governing equations. The accuracy of the model simulations is related strongly with the

mesh’s quality. Woodruff (2023) showed extensive validation of the SABv3-60m mesh for

hurricanes Matthew in 2016 and Florence in 2018. This mesh was developed with the most-

recent nearshore bathymetry and topography as obtained from the Continuously Updated

Digital Elevation Model (CUDEM) produced by the NOAA National Centers for Environ-

mental Information (CIRES 2014). However, the SABv3-60m mesh has high-resolution inland

elements for the entire South Atlantic Bight, making it too computationally expensive for

this study.

To reduce the computational burden, we created a new version of this mesh by removing

the elements of the floodplains and estuaries from Florida to South Carolina, and thus

leaving inland mesh elements only in North Carolina. For this purpose, we developed a

Python function that finds and removes the mesh elements inside a user-defined geospatial

polygon, taking care of updating the boundary information and renumbering the remaining

elements in ADCIRC’s unstructured mesh file.

The SABv5 mesh has the same resolution as SABv3-60m, but with only 2.7 million

elements and 1.4 million vertices (Table 3.1). SABv5 extends into the Western North Atlantic

Ocean, the Gulf of Mexico, and the Caribbean Sea (Figure 3.5), but about 70 percent of

its resolution is focused in coastal North Carolina. Element sizes range from 60 to 100 m

in Oregon Inlet, Cape Fear River, and coastal areas with steep bathymetric or topographic

gradients, and 100 to 200 m front and behind barrier islands. The element sizes increase in

Albermarle and Pamlico Sounds up to 2,000 m in open water and from 20,000 to 50,000 m
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Figure 3.5: SABv5 mesh with panels: (upper right) full domain and (left) close-up view of
North Carolina. The color scale indicates the average length of each triangle edge (1/3 of
the triangle’s perimeter).

in the open ocean. This resolution is appropriate for representing the flow along the coast,

into estuaries, and floodplains (Dresback et al. 2013; Westerink et al. 2008).

Table 3.1: Main characteristics of SABv3-60m and SABv5 meshes: ‘max’ represents the
maximum resolution, i.e. minimum element size; ‘minns’ represents the minimum resolution
near shore, and ‘min’ represents the minimum resolution.

Mesh name max [m] minns [m] min [m] # of vertices # of elements

SABv3-60m 60 100 50,000 3,531,883 6,812,980

SABv5 60 100 50,000 1,402,424 2,776,473

SABv5 uses the same nodal attributes as SABv3-60m (Woodruff 2023). In this research,

we used the following mesh’s vertices attributes: (1) a parameter τ0 to control numerical

damping and model stability, (2) a Manning’s n coefficient for bottom friction, (3) eddy
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viscosity, (4) a parameter to control the advection terms in the Generalized Wave Continuity

Equation (GWCE), (5) surface roughness, and (6) wind canopy coefficient. The unstructured

mesh and nodal attributes are the same for all the simulations.

Model parameters and periodic boundary conditions

A key contribution of this study is that our training library will consider the dynamic in-

teractions of tides and storm surge. However, to include tides in our ADCIRC simulations,

we need each storm to correspond to a specific historical or future time period so that the

tidal constituents can be applied with their correct phases and magnitudes. The synthetic

storms don’t have assigned dates in the STORM database, so we assigned random dates for

the storms in our subset.

We defined a two-month period of representative astronomical tides in NC. We down-

loaded tide predictions for the six long-term tide gauges in NC from the NOAA Tides and

Currents website (National Oceanic and Atmospheric Administration 2023, Figure 2.1) for

the hurricane seasons (June through November) from 1991 to 2022 (Figure 3.6a) and com-

puted the non-exceedance probability distribution (Figure 3.6b). Then, starting in January

1991, we selected consecutive two-month periods (Figures 3.6c, 3.6e, and 3.6g) and computed

their non-exceedance probability distribution (Figures 3.6d, 3.6f, and 3.6h). This process al-

lowed us to compare each individual two-month period with the full record because the

non-exceedance curves were calculated using the same set of probabilities.

Then, we discarded the two-month periods where not all six gauges had data. For each

station and two-month period, we computed the RMSE between the corresponding non-

exceedance probability distribution (black lines in Figure 3.7) and the full record’s non-

exceedance probability distribution (blue lines in Figure 3.7). This allowed us to analyze,

for each station and two-month period, how well the predicted tide of those two months

represents the tides of the full record. Finally, for each two-month period, we averaged the

RMSE values across stations and selected the two-month period with the minimum error.

We selected July through August 2001 as the modeling period (orange lines in Figure 3.7).

The stations-averaged RMSE was 2.2 cm.

Tides from this two-month period were then assigned randomly to each storm. For each of

the 1,813 synthetic storms, we randomly selected a starting day and hour with the restriction

that the full simulation must fit into the two-month period. The tracks have a 3-hourly time

step, so after assigning the starting date, the full simulation has an associated date range.

To enforce more stable simulations, we added a three-day ramp-up period before the storm.

We extended the starting date of the tracks three days into the past, and using the ADCIRC
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Figure 3.6: Methodology to define a two-month astronomical tide representative period at
Duck NOAA tide gauge. Panel (a) shows the full record of predicted tides and panel (b) shows
its non-exceedance probability distribution. Panel (c) presents the predicted tide for the 1991
hurricane season, highlighting the first two-month period in orange. The orange curve of panel
(d) corresponds to the non-exceedance probability curve of the period highlighted in orange
in panel (c). Panels (e) and (f) repeat the process the process for the second two-month
period, and finally, panels (g) and (h) shows the process for the last consecutive two-month
period.
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Figure 3.7: Non-exceedance curves of predicted astronomical tides. Data for the full record
is plotted in blue for each station. The predicted tides’ non-exceedance probability curve
is presented in black for all individual two-month periods, and in orange for the selected
modeling period.

built-in ramp function, we enforced a smooth transition between calm and storm winds.

With the simulation date range, the next step was to define the astronomical tide bound-

ary condition. ADCIRC applies a user-defined number of tidal constituents to reconstruct

the tidal signal in every vertex of the domain’s ocean boundary (Figure 3.5). The tidal height

at any location and time is given by Eq. 3.2:

H(t) = H0 +
N∑

n=1

fnHn cos(ant+ (V0 + u)n − κn) (3.2)

in which H(t) is the height of the tide at any time t; H0 is the mean water level above

some defined datum; fn is the node factor for adjusting Hn values for specific times; Hn is

the mean amplitude of tidal constituent n; an is the speed of constituent n in degrees per

unit time; t is time measured from some initial epoch or time; (V0 + u)n is the equilibrium

argument for constituent n at some location; and κn is the epoch of constituent n.

The parameters H0, Hn, and κn are location-specific, thus specific to the ocean boundary

location in the mesh (Woodruff 2023). The node factor fn and the equilibrium argument

(V0 + n) are time-specific, therefore related to the random starting date we assigned to each
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simulation. To define the astronomical tides, we used the eight principal tidal constituents:

four semi-diurnal (M2, S2, N2, and K2) and four diurnal (K1, O1, P1, and Q1). We computed

the factors fn and (V0 + n) using and ADCIRC utility program (ADCIRC 2020). Using

Python, we wrote a specific input file for each simulation.

The simulations use an implicit formulation to compute the complete gravity wave term,

available in ADCIRC version 55 (W J Pringle et al. 2021), with a timestep of 1 s. The model

parameters and periodic boundary conditions file varies across the simulations. We specified

different date ranges, tidal constituents, and simulation names for each file.

Atmospheric forcing

To simulate the storm’s effects, ADCIRC must represent the wind and pressure drop in the

full model domain (Figure 3.5). The synthetic tracks describe the atmospheric conditions

at the storm’s eye, so we used an ADCIRC built-in method to generate wind and pressure

fields that cover the entire model domain.

For this research, we adopted the parametric Holland symmetric Holland vortex model.

This parametric model has been used widely to represent wind and pressure fields for hurri-

cane simulations (Harper 1999). It solves the gradient wind equation, assuming that a rect-

angular hyperbola with two scaling parameters can approximate the surface pressure profile.

Values for the scaling parameters were determined by setting V = Vmax and dV/dr = 0 at

r = Rmax and assuming that Coriolis acceleration is negligible with the centrifugal accel-

eration at r = Rmax. We used this parametric wind model because it requires parameters

that are available in the synthetic dataset of storms. Using Python, we wrote a specific me-

teorological forcing input file for each simulation following the ATCF Best Track format.

To simulate the 1,813 tropical cyclones, we wrote storm-specific atmospheric forcing files

following the ATCF Best Track format (Knapp, Kruk, et al. 2010).

Summary of ADCIRC simulations

We simulated 1,813 storms with a randomly assigned date between July to August 2001,

enforcing a random astronomical tide. We also ran a tides-only simulation, i.e. without

atmospheric forcings, for the same 2-month period. The goal of this simulation is to provide

a time series of astronomical tides at any vertex of the domain.

We ran the simulations in three High-Performance Computing (HPC) systems: Stam-

pede2 of the Texas Advanced Computing Center at the University of Texas at Austin, Anvil

of Purdue University, and Hazel of North Carolina State University. We will summarize the

computational resources used in Section 4.1.
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3.2.2 Downscaling peak storm surge using Kalpana

In real-time storm surge forecasts, emergency managers expect flood predictions in high-

resolution, so they can overlay it with maps of critical infrastructure like roads, and in short

periods of time, so it can be helpful in decision making. Achieving both goals is challenging

because increasing the mesh resolution also increases the model run time. And even an

increase in mesh resolution may not be enough – the ADCIRC simulation results are provided

as information (time series and maxima of water levels, velocities, etc.) on the vertices of the

unstructured mesh, which may be much coarser than the roads or individual houses.

We use Kalpana (Section 2.3.3) as a post-processing step to increase the resolution of the

peak surge predictions without increasing the model runtime. We downscaled the ADCIRC

outputs into flood maps with a 15 m resolution. For this research, we used the downscaled

flooding maps to extract the peak total water level at the prediction locations (Figure 2.1).

In future work, we plan to extend the neural network to predict downscaled peak total water

level maps as greyscale images, with the peak total water level as the pixel intensity.

For this research, we binned the ADCIRC predicted peak water levels from 0 to 10 m,

every 0.5 m. The downscaled raster image has 475,541,017 pixels, covering the entire NC

coast with a resolution of 15 m. The flooding extent was horizontally expanded by one

triangular element. Generating each downscaling map takes around 7 minutes on an HPC

using four computational cores, and the output raster file size was 3.5 GB.

3.3 Step 3: Deep learning

3.3.1 Motivation

The goal of our neural network is to map the full dimensionality of the storm track (along the

time dimension for all parameters) and the astronomical tides to a single output in time and

multiple outputs in space. Our model’s predictors/inputs include storm parameters available

in the dataset and the astronomical tide at the locations to predict. The model’s output is

the peak of the total water level caused by the storm. The neural network is a many-to-one

architecture composed by a set of 1D CNNs and dense layers (Figure 3.8).

3.3.2 Data preprocessing

The neural network’s track-related (Table 3.2) inputs include the wind speed, central pres-

sure, and radius to maximum wind speed. We calculated the distance from the storm’s eye

to the prediction locations (Figure 2.1). We computed the heading direction of the storm
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Figure 3.8: Schematic of the neural network (NN) system. The inputs of the NN are the
storm track and the astronomical tide at the prediction location. The information is processed
and arranged as a 2D array with the time in one dimension and the different parameters
in the second dimension. Then, the 2D arrays for each storm are stacked together. The
data is divided into training and testing datasets. The training data is passed through a
combination of 1D convolutional neural networks (1D CNNs) and multi-layer perceptron
(MLP) that learn to map the input data to the peak total water level at the station, via
optimizing the NN parameters with back-propagation. Finally, the trained model predicts
the peak total water level for storms and tides unseen during training.

following a non-meteorological convention, i.e. the direction toward which the storm is go-

ing. We also computed the forward speed as the distance the storm’s eye covers per hour.

Finally, we decomposed the heading direction and the forward speed in u and v vectors. In

addition, we used the Fast Fourier Transform (FFT) algorithm to transform the wind speed,

central pressure, radius to maximum wind speed, and forward speed u and v vectors into the

frequency domain. We only considered the magnitude of the FFT output. The purpose is to

let the NN learn frequency domain features that can help to create a better representation

of the input time series (Huang, Liu, and Tseng 2018).

The last input of the NN (Table 3.2) corresponds to time series of astronomical tides at

the prediction locations (Figure 2.1) and at the center of the offshore model boundary (Figure

3.5). We extracted the time series from the 2-month tide-only simulation described in section

3.2.1 for the corresponding date range of each track. This information has a 10-minute time
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Table 3.2: Summary of inputs of the multitask neural network.

Input Number of parameters
Max. sustained wind speed 1

Central pressure 1
Radius to max. wind speed 1

Forward speed u and v vectors 2
Distance from storm’s eye to prediction locations 9
FFT magnitude of max. sustained wind speed 1

FFT magnitude of central pressure 1
FFT magnitude of radius to max. wind speed 1

FFT magnitude of forward speed u and v vectors 2
Offshore astronomical tide 1

step, so we computed a 1-hour average to resample the time series. The track-related data

has a 3-hour time step, so we linearly interpolated it to decrease the time step to 1 hour to

match the tide.

We combined the track-related resampled time series with the tides to create a single

input time series per storm. We refer to it as ‘input multivariate time series (IMTS)’ to

facilitate the explanation. As the date range covered by each IMTS may differ, we used zero

padding to extend the length of the IMTS, filling the gaps with zeros. Now, all the IMTS

have the same length as the longest IMTS before zero padding (Figure 3.9).

We followed two approaches for training the NN. In the first approach, we considered

a specific NN for each prediction location (single model), whilst in the second approach,

we trained one model (multitask model) to predict at all nine prediction locations. For

the multitask model, the input array contains the distance from the storm’s eye to all the

prediction locations and the astronomical tides at all the locations or at the ADCIRC’s

offshore boundary’s center. However, for each single model, only the information at the

respective location will be used for training. For example, to train a model to predict at

the Duck NOAA tide gauge (Figure 2.1), only the distance from the storm’s eye to Duck

is considered, along with the tide at Duck or the offshore tide, depending on the model’s

input configuration. The features sensitivity analysis addresses the definition of using the

offshore or local tide (Section 4.3.2). The neural network’s output is a single value in time

and space (for each single model) or multiple values in space but constant in time (for the

multitask model). The goal of the NN is to predict the peak total water level driven by the

coastal storm. The prediction locations correspond to the six NOAA tide gauges and the

Albemarle, Pamlico, and Neuse rivers. These locations have different levels of sheltering and

surrounding coastal environments. Predicting at these different locations could be challenging
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Figure 3.9: Schematic of the neural network (NN) inputs and outputs. Each row of the 3D
input array corresponds to a different storm, and each column corresponds to a time snap
during that storm. The input parameters are stacked in the depth dimension. Green shading
represents zero-padded cells. All storms have the same amount of parameters but may have
different lengths in time.
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for the neural network because different physical processes may drive the flooding. Duck and

Wrightsville tide gauges are on the open coast, whilst the rest have different degrees of

sheltering. We didn’t consider an extra point for the Cape Fear River estuary because the

Wilmington tide gauge is representative of the system.

We used the train test split tool of Scikit-learn (Pedregosa et al. 2011) to divide the

dataset into training, validation, and testing subsets. As recommended in Géron (2022), we

used 15% of the total dataset for testing and 20% of the remaining 85% for validation. This

translates to 1,233 IMTS for training, 308 for validation, and 272 for testing.

The last step in the data preprocessing is to scale it using the StandardScaler tool of

Scikit-learn (Pedregosa et al. 2011). It standardizes the features by removing the mean and

scaling to unit variance. Each parameter is scaled independently, ignoring the zero-padded

values. The scaler was trained on the training and validation subset and then used to scale

the testing subset. This is done to prevent the testing data from influencing the training

process. By scaling the data appropriately, we prepare it for the learning process, ensuring

that the model can learn effectively and generalize well to unseen storms.

3.3.3 Neural network architecture

We propose a deep learning architecture tailored for time series analysis, specifically for

predicting peak total water levels from the storm track and the astronomical tides. The

architecture, implemented using TensorFlow (Mart́ın Abadi et al. 2015), is a sequential neural

network consisting of convolutional and dense layers along with regularization techniques to

enhance feature extraction and prevent overfitting such as batch normalization (Ioffe and

Szegedy 2015) and dropout (Srivastava et al. 2014).

The NN begins with a Masking layer to discard the zero-padded values and ensure the

learning process is not disturbed by the added zeros. Then, the architecture employs three

Conv1D layers, each with a different number of filters (16, 32, and 64, respectively), a

kernel size of 3 and a MaxPooling with a pool size of 2, activated by Rectified Linear Unit

(Agarap 2018, ReLU) functions. The kernel slides across the input sequence, learning local

patterns and relationships between neighboring data points. These filters, represented by sets

of learnable weights, perform feature extraction by convolving over the input, creating feature

maps that highlight relevant patterns at different levels of abstraction with the pooling

function. Varying the filter sizes allows the model to learn and extract hierarchical features

of different complexities. We included Batch Normalization layers after each 1D CNN to

stabilize and accelerate training by normalizing the activation functions and reducing the

internal covariate shift. MaxPooling1D, with a pool size of 2, are added after each batch
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normalization layer. The pooling layers downsample the output of the proceeding 1D CNN

to retain critical features while reducing computational complexity.

The extracted features are then flattened into a single 1D vector using a Flatten layer.

This vector is passed through two fully connected Dense layers with 64 and 32 neurons,

respectively. We activated the layers using ReLU to introduce non-linearity. We added a

20% Dropout rate to randomly disable the connection of neurons between layers and prevent

overfiting. Dense layers play a crucial role in learning complex patterns and relationships

within the data by performing matrix multiplications between the input data and a set of

learnable weights, followed by an activation function. The weights represent the strengths of

connections between neurons.

Finally, in the case of the single model, it concludes with a single Dense layer activated

by a ReLU function to produce one output in space. The multitask model concludes with

nine Dense layers also activated by ReLUs to produce nine outputs in space. The proposed

architecture is a many-to-one model because it produces a single output in time from a

time-varying input.

Learnable weights in the 1DCNN and dense layers are adjusted during training through

backpropagation (Rumelhart, Hinton, and R. J. Williams 1986), which minimizes the differ-

ence between predicted and ground truth outputs.

3.3.4 Neural network hyperparameters

In deep learning, parameters are the neural network’s internal variables learned and opti-

mized during training, typically weights and biases, whereas hyperparameters are external

settings or configurations that dictate the behavior of the neural network during training.

These settings are not learned from the data, must be specified beforehand by the user, and

are fixed during training. In this subsection, we describe the main hyperparameters and what

we tuned during validation.

Learning rate is the step size at which the neural network’s parameters are adjusted in

each step of the optimization process during training. We used a fixed value of 10−4 (Géron

2022). Another important hyperparameter is the batch size, which refers to the number of

data samples the NN sees at each training step. Larger batch sizes can lead to faster training

but require more memory and might not generalize well. Smaller batch sizes take longer to

train but can sometimes converge to better solutions and generalize better. The batch size

selection often involves a trade-off between computational efficiency, model convergence, and

generalization performance. We adopted a value of 100, which was the largest batch size we

could fit in a 5GB Nvidia Quadro P2000 GPU.
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Figure 3.10: The neural network architecture consists of a Masking layer (purple box), three
blocks of 1D convolutional neural networks comprising a convolutional layer (blue blox), a
batch normalization layer, and a max pooling layer, with 16, 32, and 64 filters, respectively.
Then, the features are flattened (green box) and passed through 3 dense layers of 64, 32,
and 1 neuron, with 20% dropout each (yellow box). ReLU is the activation function in all
1D CNNs and dense layers.

In the validation (Section 4.2.1), we analyzed the hyperparameters of loss, optimizer,

augmentation size, number of epochs, and the NN inputs. Loss is a mathematical function

to quantify the difference between the real and predicted values by the neural network. It

measures how well the NN fits the data to guide the optimization process. For this study,

we used the mean squared error (MSE):

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (3.3)

and the Huber loss (Huber 1992):

Huber =

1
2
(y − f(x))2 if |y − f(x)| ≤ δ

1
2
δ|y − f(x)| − 1

2
δ2 otherwise

. (3.4)

MSE is the average of the square of the biases and ensures the trained model does not

have outlier predictions with huge errors. It puts a larger weight on these errors due to the
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squaring. Huber loss combines the MSE and mean absolute error (MAE):

MAE =
1

n

n∑
i=1

|Yi − Ŷi|. (3.5)

Equation 3.4 means that for a loss value less than δ the MSE is used, and for a greater loss,

MAE is applied. We used a δ value of 1, the default value in TensorFlow (Mart́ın Abadi

et al. 2015). Using MAE for larger loss values mitigates the weights we put on outliers, and

using MSE for the smaller loss values maintains a quadratic function near the center. Huber

and MSE losses are well-suited to predict the extremes or outliers of the training data.

In deep learning, optimizers are algorithms that tune the neural network’s weights and

biases during training to minimize the loss function. For this study, we tested the Root

Mean Square Propagation (RMSProp; ibid.) and the Adaptative Moment Estimation (Adam

Kingma and Ba 2014). RMSProp aims to improve the limitations of using a fixed learning rate

by adapting it for each parameter individually. It computes exponentially weighted moving

averages of the squared gradients for each parameter. By dividing the current gradient by

the square root of this moving average, RMSProp normalizes the learning rates, which helps

to control the magnitude of parameter updates. This adaptive adjustment mitigates the

vanishing or exploding gradient issues, leading to more stable and efficient convergence during

neural network training. Adam leverages the gradients’ first (mean) and second moments

(variance) to adjust the learning rates for each parameter during adaptive optimization. It

maintains exponential decaying averages of past gradients (first moment) and past squared

gradients (second moment). By incorporating these estimates, Adam computes adaptive

learning rates for individual parameters, allowing for more effective convergence by mitigating

the effects of noisy gradients, adapting to different parameter scales, and providing efficient

updates during training. RMSProp and Adam differ in estimating the learning rate and

the momentum term. Adam tends to show a faster convergence and robustness to various

hyperparameters due to its additional momentum term, whereas RMSProp provides stable

performance and simplicity in its implementation by solely adjusting learning rates based

on squared gradients. RMSProp and Adam are two recommended optimizers when working

with regression problems in deep learning.

The number of epochs refers to how many times the training set is passed through the

neural network to update the model’s parameters with the optimizer. We trained the NN for

1,000 epochs.

Finally, we did feature engineering to define the NN inputs. We validated the model

using the astronomical tide at the prediction location (referred hereafter as local tide) and

the astronomical tide at the ADCIRC boundary (offshore tide). We also validated the model
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using the coordinates of the storm’s eye instead of the distance to the prediction point, not

considering the FFT crafted inputs and only with the FFT inputs and not the storm param-

eters. From a storm surge forecaster’s perspective, it is easier to estimate the offshore tide

than the local tide. In the local prediction, the tide interacts with the nearshore bathymetry

and coastline, so non-linearities play a significant role. On the other hand, offshore tides can

be predicted using Equation 3.2. We aim to create the simplest framework that gives accu-

rate enough results to be extended later on to predict spatially continuous 2D maps of peak

total water levels. In Section 4.2 we included only the model results that we consider can be

extended to predict 2D maps in the future, not necessarily the model with more accurate

predictions. The trade-off between input simplicity from a forecast system perspective and

model accuracy is addressed in Section 4.3. It is important to mention that the hyperpa-

rameter tuning and model validation was done for the single model trained to predict at the

Beaufort NOAA tide gauge (Figure 2.1).

3.3.5 Data augmentation

Data augmentation is the process of increasing the size of the dataset by modifying the

existing data. It is used in object recognition problems, e.g. when rotating an image of a

dog, the label of the new image is still a dog. In regression problems, it is more complicated;

sometimes, Gaussian noise is applied to change the input and outputs slightly. As far as we

know, data augmentation has not been applied to storm surge prediction. One of the main

reasons is that storm surge prediction is a highly non-linear problem, e.g. a 10% increase of

the storm’s wind speeds may not translate into a 10% increase in the storm surge.

We augmented our input data by creating new combinations of storms and tides (Fig-

ure 3.11). We assumed that there is a linear interaction between the storm surge and the

astronomical tide – this assumption is imperfect, but it is a better estimation than adding

random Gaussian noise because the superposition of tides and surge can be done with rea-

sonable superposition (Irish, D T Resio, and Cialone 2009), and it allowed us to significantly

increase the size of our input data. For each storm, using the two-month, tides-only AD-

CIRC simulation, we removed the astronomical tide from the total water level time series to

get a surge-only time series. Then, we combined the surge-only time series with a randomly

selected series of astronomical tides to get a new total water level time series. This process

creates a new set of inputs by changing the astronomical tide time series and a new output

because the new total water level time series may have a new peak value. This process can

be repeated as many times as we want per storm, which we defined as the augmentation

size. We validated the model using the original dataset and augmentation sizes of 10, 20, 50,
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Figure 3.11: Example of the data augmentation methodology for storm 0. Panel a shows
the ADCIRC-predicted total water level time series at Duck, with a red circle to indicate the
total water level value to be predicted by the neural network; panel b shows the astronomical
tide time series obtained from the 2-month tide-only simulation at Duck; and panel c shows
the storm surge time series (computed as the difference of total water level and astronomical
tide). Panel d shows the 2-month astronomical tide time series, highlighting a randomly
selected period of the same duration as the storm track; panel e shows a zoom-in view of
the randomly selected astronomical tide; and the time series shown in panel f corresponds
to the addition of the storm surge and randomly selected astronomical tide time series, with
a red circle to indicate the new total water level value to be predicted. Panels g, h, and i
are the iteration number n of the methodology, which can be repeated as many times as we
want. The augmentation size is analyzed in subsection 4.3.2 as one of the neural network’s
hyperparameters.
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Table 3.3: Dataset sizes for different augmentation sizes.

Augmentation size Total dataset Training set Validation set Test set
0 1,813 1,233 308 272
10 19,943 13,563 3,388 2,992
20 38,073 25,893 6,468 5,712
50 92,463 62,883 15,708 13,872
100 183,113 124,533 31,108 27,472

and 100. Table 3.3 shows the training and validation sets size for each augmentation size we

tried.

We note that the input data represent the full range of possible storm conditions because

the dataset used to develop the training library is based on the last 38 years of real storms, so

it is not tailored to represent only extreme events. This behavior can be seen in histograms

of the peak total water levels as observed at all prediction locations (Figure 3.12), where the

mode of the peak total water levels is close to 1 m, but the tails extend up to 4 m. This

translates into an unbalanced dataset, biased towards low peak total water levels.

3.3.6 Metrics

For the validation process and choosing the best combination hyperparameters, we used the

mean bias error (MBE):

MBE =
1

N

n∑
i=1

(Yi − Ŷi). (3.6)

This metric computes the average difference between the true values (Yi) and the predicted

values (Ŷi), keeping track of the sign of the difference. It is important to know if the model

tends to over- or underpredict because, in real-time forecasting of storm surge or any natural

hazards, underpredictions can impact safety measures taken to keep people safe. We also

compute the MBE for the validation’s largest 10% of true values because the NN needs to

be very accurate for extreme values. We also used the root mean squared error (RMSE):

RMSE =

√∑n
i=1(Yi − Ŷi)2

N
(3.7)

to study the model performance over the test set.
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Figure 3.12: Kernel density plots of the peak total water level distribution for the augmented
and non-augmented datasets, and test and train sets of each.

3.4 Step 4: Probabilistic prediction

Once the neural network was validated and tested, we used it to predict the peak total

water level for a set of real historical storms (Table 2.1). From the National Oceanic and

Atmospheric Administration (2023), we downloaded the peak total water level measured

for the date range of the storms at the NOAA tide gauges of Duck and Wrightsville. We

selected the open-ocean Duck and Wrightsville NOAA tide gauges only because the other tide

gauges measurements may have been influenced by processes not included in our ADCIRC

simulations like rainfall or river discharge.

The STORM dataset used to develop the training library is based on the Best Track

Archive, which includes the historical storms we are considering, so we expect the NN to

perform well in predicting the peak total water level observed during each storm. We con-

sidered the ‘true’ value as the maximum total water level of the NOAA tides observation

during the storm’s date range.

Taking advantage of how fast the NN predicts, we predicted the peak total water level for

100 perturbations computed using CLIMADA (e.g. Figure 3.13) of the historical tracks. It
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Figure 3.13: Florence’s track perturbations computed using CLIMADA’s random walk algo-
rithm. The observed track is shown with a wider line. The colors indicate the storm category.

is worth mentioning that only the track’s coordinates are perturbed before the storms make

landfall, but in case of landfall, the maximum wind speed and the minimum pressure are also

modified with a decay parameter. CLIMADA’s track perturbation tool has been successfully

used in other studies (Gettelman et al. 2017; Gevecke 2022; Meiler, Ciullo, et al. 2023) and

provides a simple framework to develop a probabilistic distribution of tracks (Meiler, Vogt,

et al. 2022). The exercise aims to see if the measured peak total water level is contained in

the probabilistic prediction interval defined by NN’s output for the 100 perturbations.
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Chapter 4

Results and Discussion

First for the training library, we present the results of one ADCIRC simulation to illustrate

the predictions of total water levels in coastal North Carolina (NC), and then we present

the statistical results obtained from aggregating all the downscaled peak total water level

maps across all storms. Then for the neural network development, we show the validation

and testing of the multitask neural network to predict peak total water levels at the six

NOAA tide gauges and at three NC rivers, and then we use the neural network to make

probabilistic predictions of observed and perturbed scenarios of historic storms. We discuss

the similarities and differences of our NN with others available in the literature; we present

a sensitivity analysis of hyperparameters, augmentation methods, and features. Finally, we

discuss possible applications of a probabilistic prediction framework.

4.1 ADCIRC

For running the ADCIRC simulations, we used a total of 1,337,444 CPU-hours on three

HPC systems: TACC Stampede2, Purdue Anvil, and NCSU Hazel. We ran the simulations

on 128, 192, or 256 cores, depending on the system and available computing resources. The

library of simulations has about 17 terabytes of data. The storm input data and the library

of downscaled peak total water level maps will be publicly available to other researchers. The

wall clock runtime ranged from 1.2 to 33.3 hours per simulation, averaging 3.7 hours. The

histogram is skewed toward short runtimes (Figure 4.1), and 98 percent of the simulations

had a runtime below 10 hr. Only 11 simulations required longer than 20 hr.
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Figure 4.1: Histogram of ADCIRC simulations’ runtime.

4.1.1 Individual storms

In this subsection, we present the simulation results of storm 0, focusing on the water level

predictions at the locations of the NOAA tide gauges at Duck and Wrightsville. Storm 0

is one of the extreme tropical cyclones we simulated. It is the most unique storm in the

subset affecting NC, and thus its track and other parameters should cause it to generate an

interesting response in the coastal waters of NC.

Storm 0 has a duration of 6 days; it forms about 700 km northeast of Barbados in the

Atlantic Ocean as a tropical depression. The maximum sustained wind speed is 56 m/s

(category 3) with a minimum pressure of 939 hPa, and it occurs when the storm is in the

open ocean between Bermuda and the coast of North Carolina. We analyzed its evolution

and maximum water levels (Figure 4.2). The maximum water level output corresponds to

the peak water level on each mesh vertex at any time during the entire simulation, i.e. only

the highest value is reported. Half a day before landfall (Figure 4.2, top row), the storm was

still in category 3, but the NC coast was unaffected because the storm center was 220 km

away. It made landfall with a category-2 status, pushing water from the sounds to the Neuse,

Pamlico, and Albemarle rivers (Figure 4.2, middle row). The total water level exceeded 3.5 m

and 4.0 m in the Pamlico and Neuse river estuaries, respectively. Athough the storm passed

over Wrightsville Beach, the maximum flooding occurred near Pamlico Sound and the Neuse

and Pamlico rivers. As these locations are rightwards of the storm’s eye and relatively close,

strong winds push water inland.

We analyzed time series of track parameters and water levels at Duck and Wrightsville
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Figure 4.2: Maps of the total water levels from Storm 0 at: (top row) 12 hours before
landfall, (middle row) landfall, and (bottom row) maximum across the simulation; and for
zoom levels of: (left column) full domain, and (right column) North Carolina. The black line
shows the storm track, and the color of the marker indicates the category of the storm on
the Saffir-Simpson scale. Duck and Wrightsville tide gauges are highlighted.
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(a) Duck

(b) Wrightsville

Figure 4.3: Time series of storm 0 track parameters and water levels at the (a) Duck and (b)
Wrightsville NOAA gauge locations. For each location, the parameters are shown as: (top)
maximum wind speed (blue) and distance to Wilmington or Duck (orange) along the track,
(middle) total water level time series (green) and the astronomical tide (from the 2-month
tide-only simulation, red), and (bottom) surge-only time series defined as the difference
between the total water level and the astronomical tide.
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Figure 4.4: Location and value of the highest total water level generated by each storm on
the NC coast. The color map indicates the value of the total water level.

(Figure 4.3). It is worth remembering that we also ran a tides-only simulation (without

atmospheric forcing) for the same period, so we have astronomical tide predictions anywhere

in the domain for the date ranges of all storms. The astronomical tide is fairly similar at

both sites, but as the track passes much closer to Wrightsville than Duck (Figure 4.3), the

total water level is about 1.8 m (MSL) at Wrightsville compared to 0.7 m (MSL) at Duck.

The difference in the storm surge (about 1.5 m to 0.5 m) is in part because the Duck tide

gauge is sheltered from the storm by the Outer Banks. The storm size also plays a role in the

difference; both stations are about 270 km apart, and the radius to maximum wind speed at

landfall is 40 km.

For each of the 1,813 maximum water level outputs, we obtained the location and value

of the highest maximum water level (Figure 4.4). Most of the highest water levels, i.e. ≥
4 m (MSL), are located in estuaries or the NC floodplains. For a large storm surge to be
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developed, the water must be piled up to a geographic feature such as a dune. For all storms,

the maximum total water levels range from 0.6 to 9.6 m (MSL), with a median of 2.8 m

(MSL). The maximum total water level of storm 0 (Figure 4.2) is 6.5 m (MSL) and occurred

in a creek along the Pamlico River.

4.1.2 Aggregated downscaled maps

We downscaled the maximum water level output with Kalpana to produce high-resolution

maps of peak total water levels. Each downscaled map has the same resolution and extent as

the downscaling DEM we used for running Kalpana. We used a 3.5 GB downscaling DEM

(Figure 2.1) that covers the entire NC coast with a resolution of 15 m. It is not feasible to

work with 1,813 × 3.5 GB of data, so we exported the downscaled maps (raster files) as

grayscale images with the peak total water level as the pixel intensity. For the downscaling,

we binned the peak water levels from 0 to 10 m with intervals of 0.5 m. To transform the

raster, which may have decimal numbers given the binning intervals, we amplified the value

of each pixel by a factor of 2. This way, we forced the raster to have only integers so we could

save it as a PNG image using an 8-bit integer representation. This drastically reduced the

size of each downscaled map from 3.5 GB to about 2 MB. We created a world file with all

the necessary georeferencing geospatial data to retain the raster’s geographic information.

This file allows the PNG images to be loaded into any geospatial software, such as QGIS or

ArcGIS, and be displayed in the correct location.

Using Python, we load each grayscale image and divide the pixel intensities by 2. Then

we combined the 1,813 maps to obtain statistical results. The first statistics we computed

were the average and maximum (Figure 4.5) for each pixel through the entire library of

downscaled peak total water level maps. In some areas, there are notable differences between

the two maps. The average map has significantly smaller values on the sounds and estuaries,

below 1 m (MSL), which means that only a few simulations generated a severe surge in

those locations. Around Surf City, the difference exceeds 4.5 m. In the Neuse, Pamplico,

and Albemarle estuaries, the difference is between 2 and 4 m, and on the sound side of

Rodanthe Island, it is close to 3 m. The area between the Pamlico River and Albermarle

Sound shows similar values in both maps, more than 2 m (MSL), indicating that this zone

is more prone to flooding by storms that may not be considered extreme. The same occurs

north of Albermarle Sound and between the Neuse and Pamlico Rivers, with yellow-colored

areas on both maps.

Because each storm is equally probable (Bloemendaal et al. 2020), and assuming that

our dataset is representative of the real conditions of tropical cyclones on the NC coast, it
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Figure 4.5: Total water levels in North Carolina, showing: (left) average of maximums, i.e.
at the downscaling DEM scale, the average peak total water level for each raster cell within
all downscaled maps; and (right) maximum of maximums, i.e. the maximum total water level
for each raster cell within all downscaled maps. North Carolina’s coastal towns are labeled.

is possible to define non-exceedance probabilities anywhere in the domain. Non-exceedance

probability curves relate the magnitude of a variable and the probability that this variable

exceeds a certain threshold. For example, at New Bern, the probability of having a peak

total water level exceeding 2 and 3 m (MSL) is 14.7 and 2.4 percent, respectively (Figure

4.6).

We have the data to compute the exceedance probability on any points in the domain.

So, if we define a peak total water threshold, we can analyze the probability of exceeding

it anywhere in the domain. As an example, we computed the non-exceedance probability

of 1 m (MSL) (Figure 4.7, left) and 2 m (MSL) (Figure 4.7, right). Most of the inner shelf

from Morehead City to southwest has a probability larger than 50 percent of experiencing a

total water level above 1 m MSL. The same happens in the Cape Fear, Neuse, and Pamlico

estuaries, whereas the probability is close to 30 percent in the Albermarle River. Carteret

County is the floodplain area most likely to experience 1 m (MSL) of flooding, with prob-

abilities exceeding 40 percent. This is mainly because it is a low-lying region (Figure 2.1).

Only a handful of coastal towns are prone (probabilities ≥ 20 percent) to experience 2 m

(MSL) of flooding: Washington (Pamlico River), New Bern (Neuse River), Carteret County,
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Figure 4.6: Peak total water level non-exceedance probability curve at New Bern, NC,
highlighting the probability of exceeding peak total water level thresholds of 2 and 3 m
(MSL).

and the coast between Surf City and Cape Fear River mouth.

4.2 Neural network

We aim to define a NN that can be extended to predict 2D maps of TC-driven peak total

water levels. This aim then leads to a preference to have the same architecture, hyperparam-

eters, and datasets for all locations across the NC coast. The hyperparameter tuning was

done for the single model at the Beaufort NOAA tide gauge, whereas the feature engineering

was done for the multitask model (only for the six NOAA tide gauge locations). In this

section, we present the results of the multitask model to predict the total water levels at the

six NOAA tide gauge locations, as well as locations in the Albemarle, Pamlico, and Neuse

rivers. The input considers 20 input time series, including the offshore tide; distances from

the storm’s eye to the nine prediction locations; track parameters of wind speed, minimum

pressure, radius to maximum wind speed, u and v vectors of the forward speed, and the

FFT’s magnitude of the storm parameters. This model is accurate, and it has the potential

to be adapted in future work to predict maps.
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Figure 4.7: Probability map of exceeding a given peak total water level threshold. The left
map shows the probability of exceeding 1 m of total water level at the downscaling DEM
scale. The right map shows, similarly, the probability of exceeding 2 m of total water level.
North Carolina’s coastal towns are labeled.

4.2.1 Validation

The network parameters (biases and weights) are initialized at the beginning of training using

the initialization scheme Xavier (Glorot and Bengio 2010). Then the network propagates the

inputs through the forward pass to compute the loss, comparing the predictions and the

true training set dependent variables. The selected optimizer, RMSprop, minimizes the loss

with backpropagation to update the network parameters. During the model selection stage,

at the end of each epoch, the neural network (NN) predicts the outputs for the independent

variables in the validation set after all the training data has passed through the network.

This process is repeated for the number of epochs specified by the user for training, which

we set to 1,000. For validating the NN, we used a randomly selected 20 percent (15,708

storm-tide combinations) of the data as the validation set and the remaining 80 percent

(62,883) storm-tide combinations for training. To prevent overfitting, we saved the model

state (parameters and hyperparameters) for the epoch with the lowest validation loss .

The validation curve (Figure 4.8, top panel) shows how the training and validation loss

evolves over the epochs. Both curves start decreasing slowly after 200 epochs to become
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Figure 4.8: Validation of the multitask model, with panels showing: (top) training (con-
tinuous) and validation (dashed) curves for predicting at the nine prediction stations, and
(middle, bottom) scatter plots of the validation set’s true peak total water level on the hori-
zontal axis and the model’s predictions on the vertical axis. The dashed black line is the 1:1
curve.

stable after 400 epochs. At epoch 950, the model state with the lowest validation loss was

saved. Scatter plots (Figure 4.8, middle and bottom rows) comparing the validation set’s

true values and the network predictions at epoch 950 show a good agreement for all nine

prediction locations, especially looking at the metric of the full record. The MBE ranges

from 1 to 4 cm. Pamlico and Neuse River locations have the largest mean bias error (MBE),

which is 4 cm. The validation error for larger true peak total water levels is greater, which

is expected given that the larger peak total water levels are underrepresented (Figure 3.12).

Hatteras has the lowest MBE10% and the lowest peak total water levels. The largest MBE10%

occurs at the Pamlico River, the location with the largest peak total water level. In general,

the neural network performs very well for the validation set.
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4.2.2 Testing

After the neural network was validated, we trained it without a validation set. We used

the hyperparameters and inputs defined during the model selection stage (Table 4.1). The

performance of the NN on unseen data is assessed during the testing stage. In this case,

we used the full training set (78,591 storm-tide combinations) for training and tested the

predictions comparing against the peak total water levels from a test set (13,872 storm-tide

combinations).

Table 4.1: Multitask neural network’s final hyperparameters.

Hyperparameter Value

Learning rate 10−4

Batch size 100

Epochs 950

Optimizer RMSprop

Loss Huber

Augmentation size 50

Input tide time series Offshore

Storm location Distance

Storm parameters Raw and FFT

We quantified the model’s overall performance using the root mean squared error (RMSE)

and the MBE10% for the extremes. The RMSE ranges from 8 cm at Hatteras to 19 cm at

Pamlico River (Figure 4.9). The overall performance of the NN is good; at Wrightsville,

the RMSE corresponds to 3% of the largest true peak total water level. The MBE10% ranges

from 15 cm at Wilmington to 43 cm at Pamlico River. Real (black edge dots) and augmented

storms follow the same trend, thus the model does not perform worse in predicting the peak

total water level of augmented storms. These results support the assumption to augment the

data and show that the data augmentation process does not incorporate an extra source of

error. The results highlight the NN’s capability to predict the peak total water level with

good agreement in places with different coastal process dynamics.

To better analyze the NN’s errors, we binned the bias between the test set’s true peak total

water level and the predictions (Figure 4.10). The NN tends to underestimate the extremes,

and this underestimation gets larger for high true peak total water levels. The magnitude
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Figure 4.9: Multitask model’s predictions for the testing set at the nine prediction locations.
Each panel shows the RMSE and MBE10% metrics. Black edge dots correspond to real storms,
whilst others are augmented data. The horizontal axis shows the true values and the vertical
axis shows the predicted values. Scatter plots do not share the same axis ranges.

of the bias is relatively stable across all stations for the same bin. The nine locations we

are analyzing have different levels of sheltering and surrounding coastal environments. For

example, Duck and Wrightsville are on the open coast, whereas Wilmington, Neuse, Pamlico,

and Albemarle are upstream in river estuaries, so flooding drivers may differ. Moreover, the

Oregon location is inside a marina on the sound side of a barrier island, and Beaufort is

located in a complex coastal environment surrounded by islands and shallow areas. Having

a similar bias distribution across stations for the same bins means that the neural network

was capable of learning the different processes driving the flooding in all analyzed areas.
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Figure 4.10: Box plot of the bias for binned test set’s true peak total water level at NOAA
tide gauge locations. The box corresponds to the interquartile range (IQR), Q3 − Q1. The
bottom of the box is the 25 percentile (Q1), and the upper limit is the 75 percentile (Q3).
The line inside the box is the median (Q2). The lines outside the box are the Maximum:
Q3 + 1.5IQR, and the Minimum: Q1 − 1.5IQR. The points above the maximum or below
the minimum are outliers. All box plots share axis ranges. Some stations don’t have water
levels for all bins, e.g. there are no peak water levels above 3 m (MSL) at the Duck NOAA
tide gauge location.
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Figure 4.11: Scatter plots comparing the observed peak total water level of historic storms
and the probabilistic prediction done by the NN for the observed and perturbed tracks. The
horizontal axis shows the observed values and the vertical axis shows the predicted values.
Scatter plots share the same axis ranges. Black edge dots correspond to the historical track
prediction, whilst shaded dots are the perturbed track predictions. For each storm, all the
predictions have the same horizontal value because there is one observed peak total water
level. The black dashed line is the 1:1 curve.

4.2.3 Probabilistic prediction

After the neural network was validated and tested, we used it to consider the storm track

uncertainty, which was one of the motivations for this research. In this section, we forced the

NN with observed and multiple perturbations of real storm tracks. We predicted the total

water level for the historic storms (Table 2.1) and perturbations created using CLIMADA

(Aznar-Siguan et al. 2023), as described in Section 2.2.3. To address the performance of the

probabilistic prediction, we compared the range of peak total water levels to the peak water

level measured during the date range of each storm (Figure 4.11). We did this exercise at

Duck andWrightsville for six recent historic storms (Table 2.1); observations were unavailable

for Arthur (2014) and Isaias (2020) at Wrightsville.

At Wrightsville, the predictions for the observed track of Irene (2011), Dorian (2019), and

Florence (2019) show a good agreement with the measurements, whereas Matthew (2016) is

underestimated. Nevertheless, the probabilistic prediction interval encloses the 1:1 line (per-

fect prediction). The RMSE between the prediction of the observed track and the measured

values is 0.13 m. The neural network performs worse at Duck. The probabilistic prediction

interval does not enclose the measured peak water level for Arthur (2014), Dorian (2019),
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and Matthew (2016). The peak total water level predicted for Irene (2011) is overestimated

by approximately 20 cm, but the observed value is included in the probabilistic prediction

interval. The RMSE between the observed track predictions and the measured values is

0.33 m. At both stations, the RMSE is similar to those obtained by high-fidelity ADCIRC

simulations (Bilskie et al. 2022).

The errors we observed can be due to processes we did not include in the training library’s

development that are captured by the in-situ measurements. We didn’t include far-field winds

in our ADCIRC simulations, and they can increase the water level many hours before the

storm is about to make landfall. The parametric wind model can contribute to the errors

because it assumes a symmetric storm wind field. We adopted it because all its necessary

inputs were available in the synthetic track dataset.

There is considerable variance in the probabilistic prediction interval width. For some

storms like Arthur (2014), the peak total water levels predicted for all perturbations are

close to the prediction for the observed track, whilst for Irene (2011), there is a maximum

difference close to 1 m. Arthur (2014) and Isaias (2020) were relatively weak storms. The

peak total water level probably has a large astronomical tide contribution, so perturbing the

track does not affect much. Matthew (2016) and Dorian (2019) tracked shore-parallel from

FL to NC. Most perturbed tracks are displaced either more offshore or inland almost parallel

to the original track. At the Duck NOAA tide gauge, there is no considerable difference in

the predicted peak total water level for the different perturbations, and this is mostly due

to the sheltering that the Outer Banks provides. The perturbed tracks that shifted inland

hit Duck more directly, but as they tracked inland, they suffered a considerable decay in the

wind speed and pressure. There is a high variance in the predicted peak total water levels at

Wrightsville. The perturbations that shifted offshore hit this location without any intensity

decay. Florence (2018) originated near the coast of Africa, very far away from NC. A slight

perturbation at this distance made the perturbations track away from the study site. Irene

(2011) also shows high variance at both analyzed stations because the storm tracked crossing

the Outer Banks affecting most of the NC coast.

When we developed the training library, the minimum ADCIRC runtime was 1.2 hours

(Figure 4.1) for a 4.75-day simulation using 256 cores. Considering this runtime and aiming

to simulate the six historic storms along with the 99 perturbations, we would need 184,320

CPU hours (256 cores × 1.2 hours × 600 storms). The wall clock time of this exercise depends

on the available cores. For example, with 1,536 cores (6 × 256) to run six simulations in

parallel, we would need five days (120 hours) to simulate all the perturbations. And that

would be for just one forecast advisory, with another advisory to follow in 6 hr. This is

not feasible in real-time forecasting. The neural network took 3.4 hours to train on a 64-bit
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Intel® Xeon(R) Silver 4114 CPU 40 cores 2.20 GHZ desktop computer with a 5GB Nvidia

Quadro P2000 GPU and 6 seconds to predict the peak total water level for the 600 tracks

at both stations. We recognize that an ADCIRC simulation provides more comprehensive

information, such as spatial and time-varying results, but we want to highlight how fast the

neural network predicts. To the author’s knowledge, this is the first attempt to predict peak

total water levels for an ensemble of storm tracks using neural networks.

4.3 Discussion

4.3.1 Neural network

The performance of our neural network is similar to others available in the literature (Lee

et al. 2021; Pachev et al. 2023).

Even when the goal is similar, predicting peak storm surge (or total water level in our

case), significant differences exist between the three frameworks. Lee et al. (2021) predicted

peak storm surge (without considering astronomical tides) using a portion of 39 hours of the

storm track. One of the advantages of their framework is that it combines K-means, PCA,

and spatial interpolation with the neural network. They implemented individual NNs for a

set of points in the Chesapeake Bay and then upsampled the predictions spatially to several

points. Unlike our NN, the Lee et al. (ibid.) framework does not include the interaction

between storm surge and astronomical tides, the full storm track is not considered, and

multiple neural networks are required to predict at the different locations, increasing the

training burden.

Pachev et al. (2023) implemented a two-step framework to classify the prediction locations

as wet or dry and then to predict the peak surge or total water level at wet points. They

used two study sites, the Texas coast, where astronomical tides were not considered, and the

coast of Alaska, where they did consider the interaction between the storm surge and the

astronomical tides. This framework differs from ours in two main aspects. First, the temporal

component of the storm track is considered through statistical parameters: minimum, mean,

and maximum values. Second, the storm track is not considered as input for the NN. They

interpolated the storm’s wind and pressure field into the ADCIRC mesh. So for each storm,

they had a set of (Xi, yi) points near the coast (for the Texas application). For each point,

the Xi input vector considers the atmospheric time statistics and local statistics of the

surrounding topography or bathymetry. The yi corresponds to the peak storm surge (or peak

total water level for Alaska) at the mesh vertex. As they don’t have a temporal component,

this framework considers a Multi-Layer Perceptron (dense layers) to directly predict the peak
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surge (or total water level for Alaska) at many locations.

Lee et al. (2021) and Pachev et al. (2023) frameworks have the advantage of predicting at

many locations with a good performance when we currently predict at nine. Our framework

was designed to be extended to predict flooding maps in future research.

Of particular interest is the underprediction for extreme values (i.e. the highest peaks in

the total water levels). Our NN’s underpredictions are consistent with the performance for

extreme values in other studies. This degradation can be related to the imbalances in the

training libraries, even when libraries were specifically developed to analyze flooding for high

return period (extreme) events as training datasets. In our case, we trained the NN with a

dataset tailored to represent the average and extreme conditions of TCs in NC. The errors

we obtained for extreme values were similar to those in Lee et al. (2021) and Pachev et al.

(2023).

4.3.2 Model sensitivity

Hyperparameters

All neural networks are sensitive to their hyperparameters, and here we use a simplified

version of our NN (single model) to analyze its sensitivity to the following hyperparameters:

optimizer, loss, and augmentation size. We did the hyperparameter sensitivity only for the

validation stage, i.e. without predicting for data unseen during training and using the single

model for Beaufort. This prediction location is in a complex coastal environment, so it should

be a challenging task to predict its peak total water levels. For hyperparameter selection, we

considered the following input features: local tide, track parameters, and FFT of the track

parameters.

We analyzed the combinations of Adam or RMSprop optimizers and MSE or Huber losses

(Figure 4.12a). Using RMSprop optimizer with Huber loss gives the lowest MBE (0.01 m)

and MBE10% (0.21 m) errors. Huber loss is less sensitive to outliers than MSE because it

combines absolute and squared terms that contribute to a smoother optimization. Adam is

typically preferred over RMSProp because of its adaptive learning rate for each parameter

and robustness. Nevertheless, RMSprop may outperform Adam optimizer in specific cases, so

experimenting with both optimizers is recommended (Géron 2022). In our specific problem,

RMSprop performed slightly better, with a 3 cm lower MBE10% metric. The difference is a

12% of the error obtained using Adam.

We also analyzed the NN performance for different augmentation sizes. It is important

to note that the validation set differs for all experiments because the datasets’ sizes differ.

65



(a) Hyperparameters: optimizer and loss.

(b) Hyperparameters: augmentation size.

Figure 4.12: NN sensitivity to hyperparameters, with panels showing: (left) training and val-
idation curves for different model’s hyperparameters configuration at Beaufort, and (right)
scatter plot of the validation set’s true and predicted values using the selected hyperparam-
eters; and subfigures showing sensitivity to (a) optimizer and loss, and (b) augmentation
size. MBE corresponds to the mean bias error, and MBE10% is the mean bias error of the
validation set’s largest 10% true values.
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Our augmentation scheme (Section 3.3.5) varies only 1 of 20 columns in the input vector,

so augmenting a storm many times may create very different targets with slightly different

inputs. As far as we know, this is the first attempt to apply data augmentation for storm

surge surrogate models. We hypothesize that other researchers didn’t have the need because

they used low-variance datasets for training. Lee et al. (2021) used a dataset of 1,050 storms

(landfilling and bypassing), and Pachev et al. (2023) used a dataset of 446 landfilling storms

for training the NN for the Texas coast. We validated the model using the augmentation sizes

10, 20, 50, and 100, and with no augmentation (Figure 4.12b). The NN performed poorly

when using non-augmented storms. The MBE and MBE10% were 10 and 94 cm respectively.

We hypothesize that 1,813 storms are not enough for our proposed model given the dataset’s

high variance; it represents both the average and extreme conditions of tropical cyclones

in NC. The validation results showed that more data is not always better; the errors for

an augmentation size of 10 were 1 cm (MBE) and 21 cm (MBE10%) whereas 6 cm (MBE)

and 32 cm (MBE10%) for an augmentation size of 20. For an augmentation size of 50, the

errors were -2 cm (MBE) and 15 cm (MBE10%) whilst for an augmentation size of 100, the

errors were 3 cm (MBE) and 21 cm (MBE10%). An augmentation size of 50 gives a slightly

worse overall MBE than an augmentation size of 10 but negative (-2 vs 1 cm). Framing the

problem to a real-time forecasting scenario, we prefer the slight overestimation. Regarding

the MBE10%, an augmentation size of 50 gives a 6 cm more precise model. We hypothesize

that more data is not always better because we are varying only 1 of 20 input time series in

our augmentation procedure, and the output can differ in 1 m given Beaufort’s tides range

(National Oceanic and Atmospheric Administration 2023). When the augmentation size is

too large, the NN may see data points with a similar input but a very different output.

We tested the individual models’ performance for all six NOAA tide gauge locations and

the Albemarle, Pamlico, and Neuse river locations using RMSprop optimizer, Huber loss,

and an augmentation of 50 (Figure 4.13). The overall RMSE ranges from 5 cm at Hatteras

to 35 cm at Pamlico River. Even when this NN setup has smaller errors than the model

presented in Section 4.2 (MBE10% of 43 cm at Pamlico River), we discarded the individual

model approach. The multitask model approach takes us one step closer of having an NN

architecture to predict 2D spatially continuous maps of peak total water levels.

Augmentation method

We showed how the bias increases for larger true peak total water levels (Figure 4.10),

which is mostly because our dataset is imbalanced (Figure 3.12). The same behavior was

observed by Lee et al. (2021) and Pachev et al. (2023). To address this, we tried two different

augmentation approaches focusing on oversampling large storms. It is worth noting that this

67



(a) NOAA tide gauge locations.

(b) NC river locations.

Figure 4.13: Predictions of individual NNs (single models) for the testing set at the different
NOAA tide gauge locations and NC rivers. Each panel shows the RMSE and MBE10% metrics.
Black edge dots correspond to real storms, whilst others are augmented data. The horizontal
axis shows the true values and the vertical axis shows the predicted values. Scatter plots do
not share the same horizontal or vertical axis values.
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Figure 4.14: Sensitivity to augmentation method, with panels showing: (top two rows)
training and validation loss curves for the augmentation method (Section 3.3.5) and two
variations; and (bottom three rows) scatter plots to compares the NN predictions and the
validation set’s true peak total water levels. The colors across the subplots are consistent. It
is important to mention that each case’s validation set was randomly selected so they may
differ.

validation was done for the multitask model to predict only at the six NOAA tide gauge

locations (Figure 4.14). The augmentation A augments all storms 50 times by assigning a

randomly selected astronomical tide. This method was explained in detail in Section 3.3.5. In

augmentation B, for each prediction location, we sorted the storms in terms of the peak storm

surge (difference between peak total water level and astronomical tides). In this case, we

augmented only the storms with a peak surge within the largest 10% by assigning a randomly

selected astronomical tide to each storm surge time series. In augmentation C, we augmented

all storms 25 times by aligning the peak storm surge with a randomly selected diurnal high

tide. This method differs from A and B because we constrain the peak storm surge to

occur simultaneously with a high tide value. We found the daily peaks of the astronomical

tide from the two-month tide-only simulation at each prediction station. Augmentation B

(orange) had the worst performance; it didn’t improve the performance of the extremes and

added considerable noise. Both error metrics, MBE (4 cm on average) and MBE10% (33 cm
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Figure 4.15: Kernel density plots of the peak total water level distribution combining the
train and test sets for the different augmentation methods.

on average), are larger or equal to Augmentation A (2.5 and 26 cm on average). On average,

Augmentation C (MBE of 2.3 cm and MBE10% of 24 cm) method performs better than the

Augmentation A (MBE of 2.5 cm and MBE10% of 26 cm) method across stations (MBE: 2.3

vs 2.5 cm, ). Nevertheless, we discarded it because its implementation is more convoluted

and because the MBE10% metric worsened by 7 cm at Wrightsville, the station with the

larger peak total water levels.

The histograms (Figure 4.15) show that none of the proposed augmentation methods

balanced the dataset. The goal of trying different augmentation methods was to reduce the

variance in our dataset and to force it to be more representative of the extreme values such

as the datasets used in Lee et al. (2021) and Pachev et al. (2023). Balancing the dataset

for all stations is challenging. Coastal NC is very large; storms that may create significant

flooding at Wrightsville may not be severe at Duck. So, when augmenting extreme events

for Duck, there is a high chance that more average storms will be added to the dataset at

Wrightsville. This challenge arises from our decision to use the same model architecture,

hyperparameters, and dataset for the full study site.
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Figure 4.16: Sensitivity to input tide location (local or offshore), with panels showing: (top
two rows) NN’s training and validation curves; and (bottom three rows) scatter plots com-
paring the NN predictions and the validation set’s true peak total water levels. The colors
across the subplots are consistent. It is important to mention that each case’s validation set
was randomly selected so they may differ.

Feature engineering

So far, the validations have considered local astronomical tides as inputs. Local astronomical

tides in a location such as Beaufort are not easy to estimate, and a hydrodynamic model

or long-term measurements may be required. The tides interact with the bathymetry and

coastline in nearshore areas, so non-linearities play a significant role. On the other hand,

offshore tides can be predicted using Equation 3.2 with constituents from global tide models

such as DTU10 (Cheng and Andersen 2010). We aim to create the simplest framework that

gives accurate enough results to be extended later on to predict spatially continuous 2D

maps of peak total water levels so offshore tides are preferred, even when in sheltered areas

offshore tides do not fully explain local tides.

The NN considering the offshore tide performs better on the randomly selected validation

set (Figure 4.16). In this case, the multitask model predicts on all six NOAA tide gauges

so when using the local tide as input, it requires six local tide time series. In contrast,
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only one tide time series is required when using the offshore tide as input, independent of

how many output points the model has. Pachev et al. (2023) considered the astronomical

tides as one of the NN’s inputs for the Alaska application. They used the amplitude and

phase of the eight major tidal constituents obtained from ADCIRC simulations without

the atmospheric forcing on each mesh vertex. This makes this framework difficult to use in

real-time forecasting because a tides-only simulation will be required to get the tide-related

necessary inputs to force the NN. Adopting the offshore tide simplifies the model because

fewer inputs are required and also because it is easier to obtain.

In general, having a neural network with fewer inputs is preferred. Here, we explore

different input combinations we tried for training the multitask neural network model. The

definitive multitask NN presented in section 4.2 considers the distance from the storm’s

eye to the nine points to predict, some storm track parameters, and its FFT magnitude

as inputs. We tried removing the FFT inputs (five parameters) to simplify and reduce the

input dimensionality. Additionally, we trained the model including the coordinates of the

storm’s eye as the only indicator of the storm’s position and proximity to the points to

predict. This also aims to reduce the input dimensionality because only the eye’s lat/lon

coordinates are required; in summary, if the model predicts at n points, considering the

storm eye’s coordinates reduces the input dimensionality in n − 2 variables. We showed

(Section 2.3.1) that in some cases there is a clear correlation between the storm’s proximity

to the prediction location and the peak total water level experienced at that point (Figure

4.3). When considering only the storm’s eye coordinates, the NN is unaware of where the

point to predict is located, so it doesn’t have any proximity information.

We compared the multitask model performance (Figure 4.17) on a randomly selected

validation set for three input configurations: (1) including distance and FFT magnitudes,

(2) using eye’s coordinates and FFT magnitudes, and (3) using eye’s coordinates and without

FFT magnitudes. The NN considering distances and FFT inputs performs better. On average

across all six stations, the MBE and MBE10% metrics are 2 and 10 cm lower for the definitive

multitask NN, respectively.

Including the FFT inputs improves the model performance and it is relatively direct to

compute. There are multiple ways to compute the Fast Fourier transform of time series using

Python. On the other hand, considering the distances instead of the storm’s eye coordinates

makes the extension of the NN to predict maps more complex. In the case of predicting

a 2D spatially continuous map, it is not feasible to include the storm’s eye distance to all

pixels. The downscaled maps we produced have 475,541,017 pixels, so the amount of memory

to process input time series with ≈ 475 million parameters would be tremendous. A set of

representative points would need to be defined beforehand to sort this issue. For example, we
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Figure 4.17: Sensitivity to input combinations, with panels showing: (top two rows) NN’s
training and validation curves; and (bottom three rows) scatter plots comparing the NN
predictions and the validation set’s true peak total water levels. The colors across the subplots
are consistent. It is important to mention that each case’s validation set was randomly
selected so they may differ.

can use the information from the map showing the location and value of the peak total water

level for each simulation (Figure 4.4) as input for a clustering technique such as K-Means

(Lloyd 1982; MacQueen et al. 1967). We can compute the distances from the storm’s eye to

the clusters and use those time series as inputs for the neural network.

4.3.3 Probabilistic prediction framework

Having a framework capable of predicting peak total water level in seconds would allow

forecasters to predict flooding for several perturbations of the storm track, thus addressing

track uncertainty. The NHC issues advisories with the consensus track and multiple scenar-

ios that define a cone of uncertainty. Figure 4.18 shows the uncertainty cones for multiple

advisories of Ian in 2022. With process-based hydrodynamic models like ADCIRC, it may

not be feasible to simulate all storms in the ensemble, whereas with a neural network, the

peak total water level can be predicted for the multiple storms that define the uncertainty
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Figure 4.18: Best track of Ian (2022) in solid blue with forecasted uncertainty cones from
00 UTC 26 September to 06 UTC 28 September 2022 Bucci et al. (2023).

cone.

Two possible outcomes of a probabilistic prediction framework are flooding extent maps

with uncertainty (Figure 4.19a) and non-exceedance curves of peak total water level at

specific points (Figure 4.19b). In the first example (left), multiple inundation extents can be

predicted to incorporate uncertainty. The magenta hatched area indicates the area defined by

the probabilistic prediction of inundation extent. This area incorporates all the inundation

extents predicted for the different track perturbations. It assumes that all storms are equally

probable. The blue area shows the single result of a deterministic framework. The second

example shows a non-exceedance curve defined by predicting peak flooding for multiple

scenarios and the deterministic as a vertical line. The deterministic result indicates a peak

flooding of 2 m, whilst the probabilistic framework gives the probability associated with

different flooding levels. For instance, there could be probabilities of 17 percent and 98

percent of having water levels below 1.5 and 3 m, respectively. A probabilistic framework

may improve hazard communication and reduce the errors in flooding predictions.

Communicating uncertainty to the public is challenging, but they want information about

it during extreme weather events such as tropical cyclones (Morss, Demuth, and Lazo 2008).

The main challenge is communicating uncertainty in a good way so that users can accurately

interpret risks and take appropriate actions (Colle et al. 2021); otherwise, the forecast does
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(a) Probabilistic 2D result (b) Probabilistic result at stations

Figure 4.19: Examples of results from a probabilistic prediction system. Left: map with the
inundation extent of a deterministic modeling framework (blue) and the area defined by the
possible inundation extent (pink hatched) given by a probabilistic framework. Right: Non-
exceedance curve of peak flooding at a point. The blue vertical line shows the deterministic
peak flooding, whereas the orange curve gives the probability of non-exceeding flooding
thresholds. In this example, there is a probability of 17 percent of non-exceeding 1.5 m
and a 98 percent of non-exceeding 3.0 m of peak flooding. Both examples correspond to a
demonstration of possible outcomes of a probabilistic prediction framework using synthetic
data.

not have intrinsic value (Murphy 1993). A probabilistic prediction framework may require

forecasters to interact with social science researchers to define communication strategies. The

main goal of a real-time forecasting system is to provide information for emergency managers

and decision-makers so they can plan safety measures; if the probabilistic framework does

not contribute to this end, it may not be useful.

75



Chapter 5

Conclusions and Future Work

Flooding during tropical cyclones (TC) is a severe hazard for coastal communities. Providing

accurate, high-resolution, and timely predictions of TC-driven flooding is critical for man-

agement during and between storms. This research developed a neural network to predict

peak total water levels from TC-driven coastal flooding for North Carolina (NC), consid-

ering astronomical tides and storms of any duration as inputs, and trained with a dataset

representative of the extreme and average conditions. We simulated 1,813 tropical cyclones

using ADCIRC from a dataset of synthetic tracks created with a fully probabilistic model to

develop the training library. Our dataset represents the average and extreme tropical cyclone

conditions in NC. We used this data to train, validate, and test a neural network composed of

1D convolutional and dense layers to make point-wise predictions of peak total water levels

using the entire storm track and astronomical tides as inputs. The neural network’s capa-

bility of making predictions in seconds allowed us to demonstrate a probabilistic approach

in which flooding was predicted for several perturbations of historical storm tracks. This

work takes us one step closer to having a neural network framework for making probabilistic

predictions of spatially continuous maps of peak coastal flooding for NC.

The major takeaways of the study are:

– A training library of storm-tide simulations was developed using unique and realistic

storms. From a dataset of synthetic tracks based on the historical record, we identified

a subset of storms with likelihood of generating flooding in NC. We used ADCIRC to

simulate the 1,813 storms, and then we used Kalpana to downscale the peak storm

surge outputs to produce high and constant resolution maps of coastal NC, including

our prediction locations. From this training library, the aggregated maps can quantify

the magnitude and locations of the worst flooding, e.g. the high probabilities (greater

than 50 percent) of total water levels higher than 1 m along the open coast south of
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Cape Lookout and in the Pamlico and Neuse River estuaries (Figure 4.7).

– A deep learning model was developed with 1D CNNs and dense layers to predict at

multiple stations simultaneously. The many-to-one neural network predicts peak total

water levels (single value in time) at the prediction locations provided for training,

using the full storm track and offshore astronomical tide as inputs. The multitask NN

to predict at the nine prediction locations considers 20 inputs. Five inputs relate to the

storm track: wind speed, minimum pressure, radius to maximum wind speeds, and u

and v vectors of the forward speed, along with their FFT magnitude. It also considers

the distance from the storm’s eye to each prediction point and the offshore astronomical

tide. The multitask NN has 122,009 trainable parameters and took less than 4 hours

to train in a standard desktop workstation.

– The dataset was augmented, increasing the amount of data from 1,813 to 92,463 storm-

tide combinations. Assuming that the astronomical tides and the storm surge were

independent, we computed the storm surge as the difference between the total water

level and the astronomical tide. We augmented 50 times each of the 1,813 storm surge

series by adding a randomly selected astronomical tide.

– The NN performed well for all nine prediction stations. We reserved 15 percent of

the data for testing, and then split the remaining 85 percent by using 80 percent for

training, and 20 percent for validation. The average mean bias error (MBE) was 2 cm

for the validation set, and the MBE10% was 22 cm. For data unseen during training,

the averaged RMSE and MBE10% were 15 and 25 cm, respectively. The performance

of the NN is good and similar to other works available in the literature. The model

performed similarly to predict the peak total water across the NC’s coast. The largest

RMSE (19 cm) occurs at Neuse River whereas the minimum RMSE (8 cm) occurs at

Hatteras.

– The NN’s bias varies almost linearly with the magnitude of the peak water level. There

is a clear relationship between the NN’s bias and the magnitude of the true peak

total water level, which is related to how imbalanced the training dataset is. The

augmentation method used contributed to having an imbalanced dataset. Given the

size of the study site, it was challenging to oversample the extreme storms in all stations

simultaneously. An extreme storm at Duck may not be extreme at Wrightsville.

– A potential use for the neural network was demonstrated via probabilistic predictions

with perturbations of recent historic storm tracks. We predicted a range of peak wa-

ter levels at the Wrightsville NOAA tide gauge for Irene in 2011, Matthew in 2016,
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Florence in 2018, and Dorian in 2019. At Duck, we also predicted for Arthur in 2014

and Isaias in 2020. The RMSE of the DL-predicted peak total water level for the ob-

served track is 33 cm at Duck and 13 cm at Wrightsville. The accuracy is slightly

below that obtained with high-fidelity models but a much shorter time. The peak total

water level intervals defined by the probabilistic predictions may help improve hazard

communication during real-time forecasting.

In future research, the library of high-resolution maps of TC-driven peak coastal flooding

can be used for risk analysis to determine how exposed NC’s coastal towns are to flooding.

Flooding hotspots can be identified, and it can motivate the implementation of smaller-

scale hydrodynamic models to test mitigation measures. More sophisticated recurrent neural

networks, such as Long Short-Term Memory (LSTM) units, may be tested in future research

to improve the NN performance, specifically on extreme values. Also, other augmentation

schemes focusing on oversampling the extremes need to be developed to decrease the MBE10%

metric. In real-time forecasting, it is important not to underpredict high peak total water

levels. It may be worth increasing the training library only with extreme storms.

We included the probabilistic prediction to show a possible neural network application. It

may be worth using a more sophisticated method to create the historic track perturbations,

varying the wind speed, pressure drop, or radius to maximum winds, not only the eye’s

coordinates. In future research, this will allow to quantify the performance of the probabilistic

prediction framework. Another possible application of this framework is to analyze how the

width of the probabilistic prediction interval varies with the lead time in the NHC advisories.

This will allow understanding how the uncertainty in the NHC advisories evolves during the

forecasts of real events.

Currently, the NN predicts a fixed number of stations provided for training. The frame-

work will be expanded to predict 2D spatially continuous maps of peak total water level for

the NC coast. We will replace the dense layers in our NN architecture with a set of trans-

posed 2D convolution layers. Predicting maps is of considerable importance to implement

our NN in real-time forecasting. The flooding hotspots may vary from storm to storm, so

having an NN capable of predicting flooding for the entire NC coast is preferred.
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