Spring 2022 Newsletter
Our NSF project to implement subgrid corrections in ADCIRC was featured in the Spring 2022 newsletter for our department. This is great recognition for Johnathan’s PhD research.
Our NSF project to implement subgrid corrections in ADCIRC was featured in the Spring 2022 newsletter for our department. This is great recognition for Johnathan’s PhD research.
The proposed work integrates outreach and research activities over the two-year project period to improve our prediction and communication of chronic flood hazards to stakeholders in the Town of Carolina Beach, NC (CB), a community plagued by chronic flooding. We will couple an existing high-resolution hydrodynamic model with a stormwater management model to hindcast and test hypotheses on the drivers of chronic, and sometimes unexpected, flood events in CB. In parallel, we will deploy a real-time flood sensor network in CB to continuously measure the stormwater network capacity and fill data gaps on the incidence and causes of chronic flooding. In response to the expressed need from local officials, we will also use the in-situ data to develop an early-warning system and engage community members to co-develop flood-mitigation design scenarios for future testing using the new model framework.
K Anarde, M Hino, A Gold, JC Dietrich. “Identifying the drivers of chronic coastal flooding: a community-centric approach.” National Oceanic and Oceanic Administration, North Carolina Sea Grant, 2022/02/01 to 2024/01/31, $119,411.
Congratulations to Ajimon!
Numerical models can represent the coastal environment and its response to the combined effects of tides, river flows, and winds. It is especially challenging for numerical models to represent the response of estuaries to storms, due to the complex interactions of fresh and saline waters, and thus relatively few studies have used models to represent both storm- and density-driven circulation in estuaries. These few studies have shown that salinities and temperatures of estuaries can change significantly during storms and may require weeks to recover, depending on the amount of freshwater discharge. However, these studies have been limited in number and geographic coverage, relied on coupling to other models for baroclinic inputs, did not have the estuarine mixing and stratification as a focus, or were missing physics. Much is still uncertain about how estuarine circulation evolves during a storm event. How quickly do the horizontal salinities respond to the storm? How does the salinity transport vary through an estuary? How do freshwater discharges due to rainfall affect the mixing? Another uncertainty is the salinity response after the storm. How quickly does a system recover? Do the freshwater discharges interrupt the recovery? In this thesis, it is hypothesized that, for a large and shallow estuarine system with minimal connections to the open ocean, the storm forcing will cause large brackish and freshwater intrusions and recoveries that vary through the system.
To investigate this hypothesis, we developed a three-dimensional model of storm- and density-driven circulation in the Albemarle-Pamlico Estuarine System (APES) in North Carolina. Irene (2011) was used as the basis for storm event simulations to examine the evolution of the horizontal salinity distribution. Included in this model were hurricane-strength winds and pressures, tides, river discharges, and density circulation. Using this model, it was determined that during Irene, APES experienced movements of brackish water into the estuaries and saline water into the sounds. These movements were heavily dependent on the winds. After the stormsimulation, the large river discharges produced intrusions of fresher water into major areas of the sound, and after two weeks, the system was not fully regulated.
From this research, we have developed a better understanding of the horizontal salinity distribution of APES as well as how the system reacts to a single storm event. This research allows for future studies to consider different types of storms along with refinement of the river forcings, to understand better the full range of estuarine responses.
Our research into real-time erosion predictions using XBeach was featured in a recent video by Lenovo and CNN. Jessica Gorski describes how we are exploring the use of 1D transect models to predict erosion during storms.
Lenovo provides hardware and support for the HPC services at NC State. The video was produced as branded content for CNN, and it was featured on the CNN web site and social media.
The video required two days of shooting with a team of directors, photographers, audio specialists, and production assistants. Click below to see photos of the production.