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How to Represent Channels / Barriers Smaller than the Mesh?
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1.1. Motivation

Loss of Information at Model Scale
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1.1. Motivation

Use Smaller-Scale Information to ‘Correct’ Flows

Pond

50-100 m

Marsh Grass



1.2. Methods

Subgrid Corrections

Subgrid corrections use information at smaller scales to ‘correct’ flow variables (water levels,
current velocities) at the model scale

Selected applications to shallow water flows:
— Defina (2000) corrected advection and partially wet cells
— Able to coarsen by factor of 32
— Casulli (2009) and Casulli and Stelling (2011) also corrected partially wet cells
— Used lookup tables created from high-resolution elevation data
— Volp (2013) corrected bottom stress
— Improved discharge and water surface slope relative to high-resolution counterparts

Able to coarsen the model resolution and still represent small-scale flow pathways and barriers

— Higher accuracy at same resolution, higher efficiency at coarser resolution



1.2. Methods
Averaged Variables

Shallow water equations are averaged to the model scale, e.g. Kennedy et al. (2019)

A given flow variable @ can be averaged:

G_/ Q dA
Aw

— To only the wet part of the grid/mesh scale:

W_/ Q dA
Aw

Aw = ¢Ac

— To the grid/mesh scale:

— Where the areas are related by:



1.2. Methods
Averaged Governing Equations for ADCIRC

For this study, its governing equations were averaged to the mesh scale

— Example of momentum conservation in x-direction:

9(UH)¢g n 9Cyu(U){UH)¢ n ICwu(V)(UH)g

ot Ox dy —f{VH)e
e DO P
=—gC(H)e—5 — —glHc—5 +¢’<po>w
B [(U)[(UH)g 0 = O{(UH)g , 0 » d{UH)¢
Cia.s (Hyw * 0x En Ox * dy En Oy

in which the red coefficients are new closure terms

— Similarly for momentum conservation in y-direction, mass conservation



1.3. Calcasieu Lake LA

Meshes and Station Locations

Coarse:
1,236 vertices
2,370 elements

Fine:
40,816 vertices
81,321 elements

Latitude
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1.3. Calcasieu Lake LA

Improvements for Channel Connectivity

Traditional Subgrid Level 0
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1.3. Calcasieu Lake LA
Tides and Storm Surge at Stations
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1.3. Calcasieu Lake LA

Accuracy at Stations

Differences (m) in peak water levels at observation stations

Coarse Subgrid  Coarse Traditional

Fine Traditional

LA12
LC2a
LCH
LC6a
LC7
LC8a
LC9
LC12

0.065
0.423
0.281
0.898
0.006
0.312
0.180
0.202

0.028
1.328
0.538
1.095
0.048
0.327
0.192
0.182

0.060
0.152
0.435
0.940
0.002
0.412
0.155
0.206



1.3. Calcasieu Lake LA

Maximum Water Levels along Main Channel
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1.3. Calcasieu Lake LA
Efficiency

Wall-clock times (sec) for three test cases

— All tests run in serial on same hardware

Coarse Subgrid Coarse Traditional Fine Traditional

Winding Channel 62 107 5,787
Buttermilk Bay 508 277 4,176
Calcasieu Lake 5,248 3,728 167,514

Subgrid ADCIRC is slightly slower on the same mesh

— But it gives comparable results to a mesh that is 33 times coarser



1.4. Conclusions
Subgrid ADCIRC
The main contributions of this study are:
1. Subgrid corrections were added to ADCIRC
— First application with hurricane-strength forcing
2. Increases in accuracy and hydraulic connectivity on coarsened meshes
— Peak surge within 0.5 m at top of Bayou Contraband
3. Efficiency gains on coarsened meshes
— Speed-ups by factors of 30+
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Ongoing efforts are focused on:
— Implementing higher-level corrections for friction and advection
— Scaling the subgrid ADCIRC to storm simulation on large domains




1.4. Conclusions
Recent Manuscript in Ocean Modelling

Ocean Modelling 167 (2021) 101887

Contents lists available at ScienceDirect
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Subgrid corrections in finite-element modeling of storm-driven coastal
flooding
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ARTICLE INFO ABSTRACT
eywords: Goastal flooding models are used to predict the timing and magnitude of inundation during storms, both for
storm surge real-time forecasting and long-term design. However, there is a need for faster flooding predictions that also

Subgrid represent flow pathways and havvvevs at the scales of critical infrastructure. This need can be addressed
ADCIRC subgrid corrections, which use infor at smaller scales to ‘correct’ the flow variables (water levels, current
velocities) averaged over the mesh e, Recen sdies e shovwn 3 decrease n ru time by 110 2 orders
of magnitude, with the ability to decrease further if the model time step is also increased.

In this study, subgrid corrections are added to a widely used, finite-clement-based, shallow water model
to better understand how they can improve the accuracy and efficiency of inundation predictions. The
performance of the model, with and without subgrid corrections, is evaluated on scenarios of tidal flooding

Wetting and drying
Shallow water equations

in a synthetic domain and a small bay in Massachusetts, as well as a scenario with a real atmospheric forcing
and storm surge in southwest Louisiana. In these tests we observed that the subgrid corrections can increase
model speed by 10 to 50 times, while still representing flow through channels below the mesh scale to inland
locations.
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How to Predict Flooding due to Erosion of Beaches / Dunes?
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Formation of a Barrier Island Breach and its Contributions to Lagoonal Circulation
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2.2. Methods
Model Coupling

Our wave/surge models are limited:

— Bathymetry and topography are static

— No consideration of beach erosion, dune
breaching, new flow pathways, etc.

— Flooding impacts are limited behind the dunes

We are coupling with XBeach (eXtreme Beach):
— Open-source model developed in the Netherlands
— Capable of simulating hydrodynamic and morphodynamic processes
— Applied typically at beach scales (a few kilometers)


http://oss.deltares.nl/web/xbeach/

2.2. Methods
Aerial Photo of Hatteras Island










2.3. Isabel Inlet

Formation of Isabel Inlet
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2.3. Isabel Inlet

Deeper Breaches

Elevation (m) (NAVD88)
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Distance from the left boundary (m)



2.3. Isabel Inlet

Static vs Coupled Flooding Predictions




2.3. Isabel Inlet

Large-Scale Effects on Lagoonal Circulation
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2.4. Conclusions
Subgrid ADCIRC

The main contributions of this study are:
1. XBeach could predict the initiation and location of the breach
— Not able to predict number and full depths of breaches
2. Flow from sound to ocean helps to deepen the breached channels
— Artificially raised water levels to make this happen
3. Breaching of the barrier island has significant effects on large-scale
— Flooding extends 10 to 13 km into sound

Ongoing efforts are focused on:
— Expanding to the full U.S. coastline
— Automating for real-time forecasting

X
X

Mavay e
e
OB

AKX
20

Tarav,harard
viSariera
%

K

rasis,
Ta




2.4. Conclusions
Recent Manuscript in Estuarine, Coastal and Shelf Science
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ARTICLE INFO ABSTRACT

Keywords: Barrier islands are a primary coastal defense and often experience erosion during storms. When they fail due

Hatteras Island. induced breaching, there can be significant changes to the small- and large-scale hydrodynamics

Hurricane Isabel and morphodynamics of the region. In this study, we explore the formation of a breach on Hatteras Island,

ADGIRC4EWAN North Cuolm'l d\lnng Isabel (2003) and the subsequent flooding into Pamlico Sound. Two-way coupling of
highfidel solution numerical models for coastal erosion and flooding enables a better understanding

o the formation of the breach, a3 wel assconaiosofth breach's ffects o the cireulation i the region. The
Brcach connecingthe ocea 1 the sound formed dring th day of andia. 1t s shown that, dring te storm,
overwash and inundation from the ocean led to deterioration of the beach and dunes, and then after the storm,
the ereation of channels through the island was sensitive to elevated water levels in the lagoon. Then flooding
scenarios are considered in which the ground surface of the hydrodynamic model was () static, updated with
the (b) pre- and post-storm observations, and updated dynamically with (c) erosion model predictions and (d)
erosion model predictions with elevated lagoon-side water levels. The model results show that the breach has
region-scale effects on flooding that extend 10 to 13 km into the lagoon, increasing the local water levels by
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ADCIRC s system of computer programs for slving time dependent, free surface ciculation and tran
problems in two an tilize the od in space all
the use of highiy flexibl, unstructured grids Typical ADCIRC applcations have includeds

= prediction of storm surge and flooding
* modeling tides and wind driven circulation
* larval transport studies
* near shore marine operations
* dredging feasibility and material disposal studies

What We Do Join Our Team FigureGen Kalpana SWAN+ADCIRC

MEET OUR TEAM
Welcome to the CCHT! We develop computational models for wind waves and coastal
circulation, and then apply these models to high-resolution simulations of ocean behavior. (Gasey Diatrich  Posts| OV
Our goals are to understand how eomllnn are threatened during storms, how materials are e e

the coastal risks for use in
decision support. Our research spans the disciplines of coastal engineering, numerical
method
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