Enhancing Coastal Resilience through Participatory Transformation of Barrier Islands

Barrier-island communities face flooding due to rising sea levels and stronger storms, and typical adaptations (protect, accommodate, retreat) may not keep up with increasing risks. Communities are now considering extreme adaptations, such as allowing an island section to ‘return to nature’ by removing roadways and other infrastructure. But these extreme adaptations transform the natural processes of and the community’s relationship with barriers. The effects on flood risks at nearby communities are not well understood, and it is not clear whether communities will ‘welcome the water’ or reject it as opposing their sense of place. This Disaster Resilience Research Grant (DRRG) project explores participatory transformation of barriers. Stakeholders will provide insights on place meanings across the barrier island and how floods affect these places and their connections to the community. The project also quantifies how flooding at a natural island section may change the hazard at neighboring communities, and whether these locations can be selected to minimize the risks while maximizing community attachments. These activities provide a framework for participatory transformation, as well as advance technologies for flood risk modeling that can be expanded to improve disaster resilience for communities along the U.S. Gulf and Atlantic coasts. This research also supports an immersive experience for students to collaborate across engineering and social-science disciplines to tackle the challenges of climate change.

JC Dietrich, EL Seekamp. “Enhancing Coastal Resilience through Participatory Transformation of Barrier Islands.National Science Foundation, Directorate for Engineering, Division of Civil, Mechanical and Manufacturing Innovation, Disaster Resilience Research Grants, 2024/01/01 to 2026/12/31, $398,891 (Dietrich: $199,117).

Conferences: Fall 2023

Poster: Fall 2023 Conferences

Efficiency Gains for Spectral Wave Models in Coupled Frameworks

We propose to modernize a spectral wave model to allow for more flexibility and efficiency within a coupled modeling framework. It is now commonplace for spectral wave models to run alongside other models for circulation and related coastal processes. These models can be coupled within sophisticated frameworks or at the source-code level. However, the widespread use of coupled models has also led to the identification of inefficiencies. Spectral wave models tend to be computationally expensive, and this cost can be amplified when they are coupled with other models. There are known methods for reducing the cost of spectral wave models, such as the nesting of nearshore and regional domains with offshore forcing from other sources, but these methods may have challenges in a coupled framework, such as the need to interpolate between nested domains. The coupling overhead can be (and has been) minimized, but there may be additional methods to further reduce costs without sacrificing predictive accuracy.

Thus, there are remaining research questions related to how to improve the performance of a spectral wave model in a coupled modeling framework. What are the tradeoffs when a spectral wave model is nested nearshore and receives boundary conditions from other sources? Over what period should the spectral wave model simulate as a storm approaches a coast? Can this research lead to guidance or best practices for coupled modeling applications? This project will focus on the Simulating WAves Nearshore (SWAN) model and SWAN+ADCIRC framework, but the project findings will be transferable to other spectral wave models and frameworks. We aim to improve the ability to nest spectral wave models in both space and time, via modernization of boundary conditions and a coupled model controller, and thus improve computational efficiency.

JC Dietrich. “Efficiency gains for spectral wave models in coupled frameworks.” Department of Defense, Broad Agency Announcement, Engineer Research and Development Center, Coastal Hydraulics Laboratory, 2023/09/22 to 2025/09/21, $191,353 (Dietrich: $191,353).

Poster: Undergraduate Research Symposium 2023

JT Voight, JS Knowles, TA Cuevas López, JC Dietrich. “How will Sea Level Rise affect the Storm Surge in Norfolk, Virginia?Undergraduate Research Symposium, North Carolina State University, 27 July 2023.

How will Sea Level Rise affect the Storm Surge in Norfolk, Virginia?

Continue reading

Conference: USNCCM 17