News: NC State on the Coast

2024/10/08 – NC State
NC State faculty and students are helping to keep coastal communities healthy through the North Carolina Center for Coastal Algae, People and Environment

NC C-CAPE (and our fearless leader Astrid Schnetzer) were featured on the NC State homepage.

NC C-CAPE was featured on the NC State homepage. Lots of information and quotes from folks in the center, including great photos of our colleagues in the field and laboratory. It is fun to contribute to such a large, meaningful research effort.

ncsu-engr

“In the past few months, we’ve officially started to sample as NC C-CAPE,” [Barrett] Rose said. “It was a shock to see the magnitude of how much we were actually studying. It went from a small pilot study to a huge center effort.”

Data collection and analysis is only the first part of the work NC C-CAPE seeks to do. While harmful algal blooms are common in fresh waters across the U.S. and the world, major data gaps around the issue exist. [Astrid] Schnetzer’s data will inform NC C-CAPE’s other two projects, which focus on predicting the health risks of toxic algal blooms on mammals and humans, as well as considering how factors like climate change will affect future toxin levels in water and seafood.

“The most exciting aspect of NC C-CAPE for me is that the research doesn’t end where my expertise ends,” said Schnetzer. “What we learn from the field about algal toxins is handed to the next team to look at the bigger picture on the ecosystem level and in connection to human health.”

News: Oceans and Human Health Center

2024/03/19 – NCSU Civil, Construction, and Environmental Engineering
CCEE faculty to advance understanding of toxic algae blooms, protect human health as part of new NSF, NIEHS Center at NC State

ncsu-engr

Obenour will lead a project with Dietrich and Natalie Nelson (Department of Biological and Agricultural Engineering) focused on the development of models to predict the transport of cyanotoxins — toxins produced by cyanobacteria released in algae blooms — in coastal environments. The models will focus on coastal North Carolina, especially the estuaries and sounds where freshwaters mix with saline waters. With the models, researchers will evaluate where cyanotoxins may collect and where they may originate. They will also evaluate scenarios of future climate, such as how changes in temperature, river flows, and sea levels may affect the transport of cyanotoxin.

According to Obenour, “the research will protect public health by identifying cyanotoxin hotspots and by informing management actions to reduce cyanotoxin risks in the future.”

2024/02/28 – NCSU College of Sciences
NC State Receives $6.9 Million From NSF, NIEHS to Fund New Oceans and Human Health Center

ncsu-engr

NC C-CAPE will carry out three research projects. The goal of the first project is to understand the dynamics of harmful algal blooms and learn more about the presence and distribution of microcystin — a liver toxin — across the Pamlico-Albemarle Sound System, the country’s largest lagoonal estuary. They will then link spatiotemporal patterns to the contamination of seafood. The second project will define how microcystin mixtures influence mechanisms of liver toxicity in regulatory-relevant mammalian models and at-risk human populations. In the third project, researchers will work to predict microcystin distributions in water and seafood based on various environmental controls — and assess exposure risk in a changing climate. They will do so by integrating diverse data sets and coastal circulation modeling within a probabilistic modeling framework.

News: Department Social Media

2023/06/01 — NCSU Civil, Construction, and Environmental Engineering
YouTube

ncsu-engrJack Voight was featured on social media in a video about his summer research in our REU program. He is running simulations of storm surge and coastal flooding as part of a project about total water levels at coastal infrastructure. Glad he is part of our team!

News: Preparing for a Changing Climate

2023/01/11 – UDaily, University of Delaware
UD civil engineers lead research to examine models for coastal readiness at U.S. military bases

University of Delaware civil engineers are leading a multi-institutional effort to identify the best models to calculate flood risk at coastal military installations where climate change threatens to increase the risk of flood damage from sea level rise and storm surge.

The four-year project, which launched in mid-2022 and will run through spring 2025, is funded by a $2.2 million grant from the U.S. Department of Defense (DoD). Project partners include faculty and students from the Netherlands, North Carolina State University, the University of South Alabama, Texas A&M and the United States Geological Survey (USGS).

“The goal is to provide guidance to the DoD about the strengths and weaknesses of each model in comparison. They’re all going to have things they’re good with and things they struggle with,” Dietrich said. Those comparisons will help the agencies decide what types of models they want to use to get what types of information — depending on how much time, effort and funding they want to commit.

There’s also a goal of reducing cost and building smarter models, he said.

“If we are able to improve our predictions at very specific sites along the coast, we also can have better predictions at other specific sites along the coast, like someone’s house or a bridge or other infrastructure,” Dietrich said.

News: Jessica Gorski Featured in Lenovo Video

2021/11/15 – Intel + Lenovo
Coastal Computing

Our research into real-time erosion predictions using XBeach was featured in a recent video by Lenovo and CNN. Jessica Gorski describes how we are exploring the use of 1D transect models to predict erosion during storms.

Lenovo provides hardware and support for the HPC services at NC State. The video was produced as branded content for CNN, and it was featured on the CNN web site and social media.

The video required two days of shooting with a team of directors, photographers, audio specialists, and production assistants. Click below to see photos of the production.

Continue reading

News: Coastal Resilience and Sustainability Initiative

2021/09/15 – NCSU Executive Vice Chancellor and Provost
Catalyzing Coastal Change

ncsu-engr

Casey Dietrich, associate professor in the Department of Civil, Construction and Environmental Engineering, is also a member of CRSI’s leadership team. His expertise in the prediction of coastal hazards, will help the initiative further research on determining how coastal environments respond to storms. For example, a storm like the recent Hurricane Ida devastated New Orleans’ power grid, and there needs to be some sort of solution for how to solve power issues during and after storms.

“My research team develops computer models to represent how beaches and dunes will be eroded, and which areas will be flooded and for how long,” he said. “It is critical to understand how these hazards can vary, both across complex coasts like in North Carolina for now and in the future, as a step toward improving resiliency and sustainability for coastal regions.”

The interdisciplinary nature of the team’s work, however, cannot be overstated. Solutions to one coastal challenge, like a seawall to mitigate flooding, may create new challenges or unintended consequences to the environment, tourism, energy and water systems. The varied issues facing coastal areas necessitate connecting across disciplines to develop integrated solutions.