Prediction of Peak Water Levels during Tropical Cyclones with Deep Learning

Tomás Cuevas López

MS Defense Department of Civil, Construction, and Environmental Engineering North Carolina State University

15 February 2024

(ロ) (個) (E) (E) (E) (の() 1

About me

BS at University of Chile

Consulting Port and Coastal

Engineer at PRDW

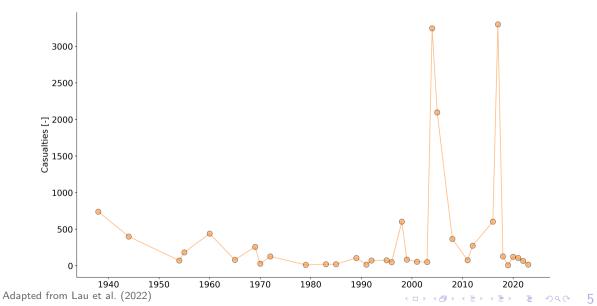
MSc at NCSU

Coastal scientist at DHI

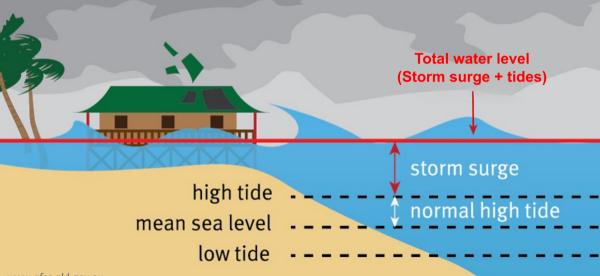
<ロト < @ > < E > < E > E の < C 2

Hurricane Ian (2022)

Casualties associated to costliest U.S. tropical cyclones

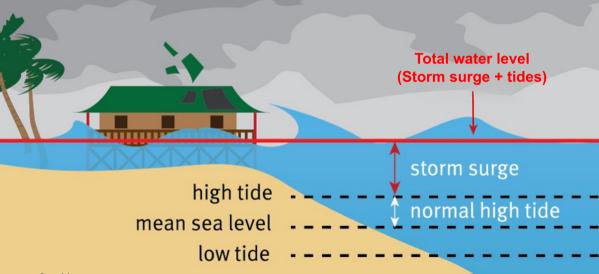


Storm surge: abnormal rise in the water due to the combined effect of wind and pressure drop



www.qfes.qld.gov.au

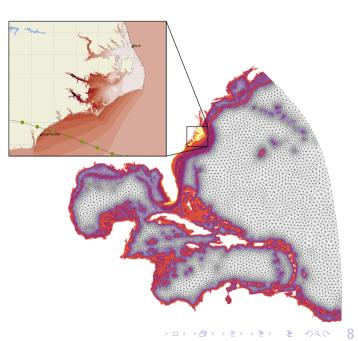
lan's storm surge caused 66 deaths and damages of more than \$112 billions



www.qfes.qld.gov.au

How do we predict storm surge?

- o Various flavors of numerical models
- o Diverse levels of physics
- o Different hardware requirements
- o Wind and pressure field as forcings
- o Mesh for representing the coastal environment

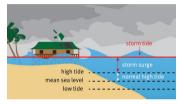


Real-time forecasting of storm surge

NHC issues storm track and intensity every 6 hours

Workflow

Storm surge is simulated for the latest advisory 1-3 hours

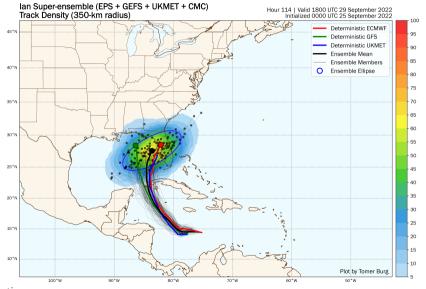


Predictions are delivered to emergency managers

Models need to be fast!

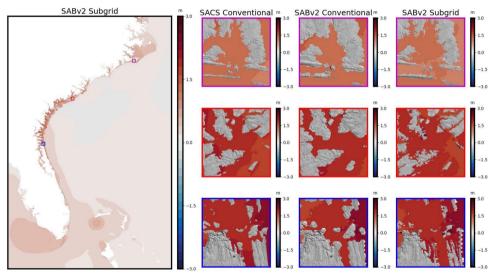
◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ - つくで

We want models fast enough to address the storm track uncertainties!



yaleclimateconnections.org

How can we speed up the models? \Rightarrow Subgrid corrections 13 times faster!

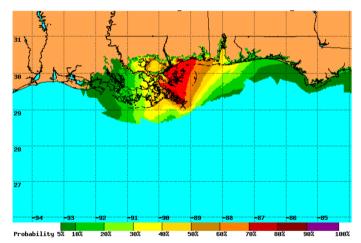


Woodruff et al. (2023)

How can we speed up the models? \Rightarrow Reducing the physics

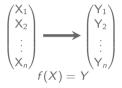
P-Surge (Taylor and Glahn 2008) and SLOSH (Jelesnianski 1972):

- o Simplified physics
- o Basin-specific mesh
- o Multiple tracks
- o Computationally cheap



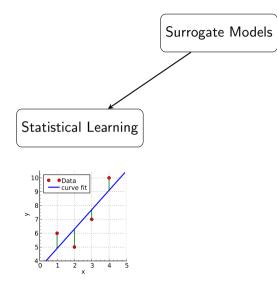
How can we speed up the models?

Surrogate Models

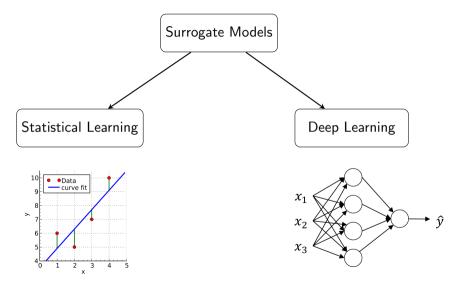


(ロ) (個) (目) (目) (日) (0) (0)

How can we speed up the models?



How can we speed up the models?



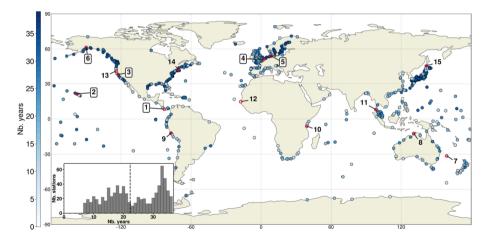
Deep learning to predict storm surge

Applying NNs to predict storm surge is not new

- o You and Seo (2009)
- o De Oliveira et al. (2009)
- o Tiggeloven et al. (2021)
- o Lee et al. (2021)
- o Pachev et al. (2023)
- o Cuevas et al. (coming soon)

Deep learning to predict storm surge Neural networks trained using storm surge observations

Global predictions of storm surge from atmospheric reanalysis (Tiggeloven et al. 2021)



Deep learning to predict storm surge Neural networks trained using storm surge observations

Pros:

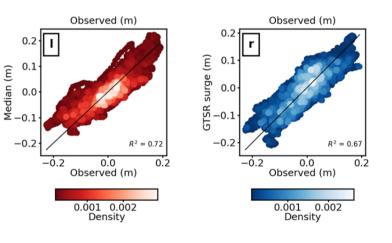
o Good results

o No need for process-based models

o Global coverage

Cons:

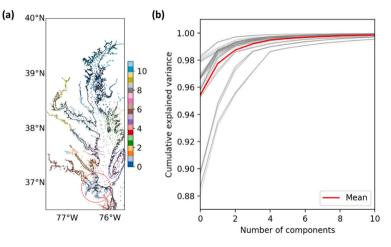
- o Obs. are scarce
- o Not full track
- o Eye's dynamics is not captured
- o No astronomical tide



Deep learning to predict storm surge Neural networks trained using storm surge process-based models

Storm surge predictions at Chesapeake Bay from synthetic tracks (Lee et al. 2021)

- o 1,031 synthetic tracks
- o K-means clustering
- o Principal component analysis
- o Many-to-one neural network



Deep learning to predict storm surge

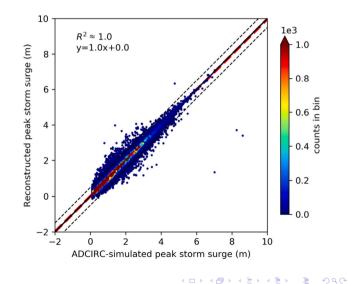
Neural networks trained using storm surge process-based models

Pros:

- o Good results
- o Eye's dynamics is well captured
- o Predictions at many locations

Cons:

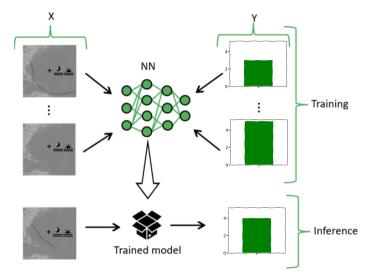
- o Multiple NNs
- o No astronomical tide
- o Not full track
- o Training data tailored to extremes



How can we take the NNs one step closer to process-based models?

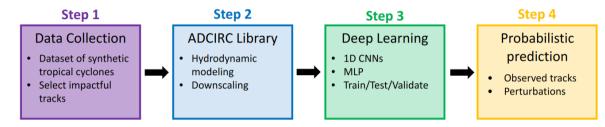
Training dataset:

- o Tracks from a probabilistic model
- o Extreme and average conditions
- o Random astronomical tides
- Neural network:
 - o Tide as input
 - o Tracks of any length
 - o Prediction at multiple locations simultaneously

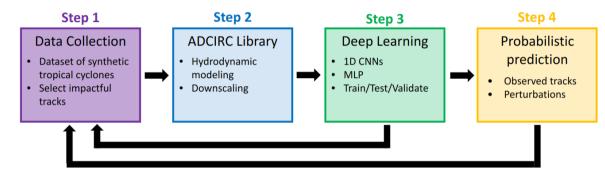


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

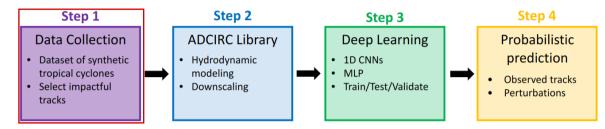
Proposed workflow



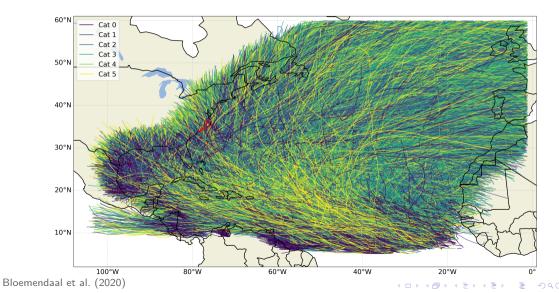
Proposed workflow



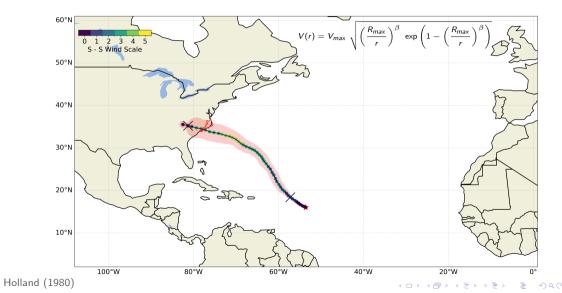
<ロ> < 母> < 母> < 国> < 国> < 国> < 国 > < 国 > 24



Step 1: Dataset of synthetic tropical cyclones Identify a subset of impactful storms

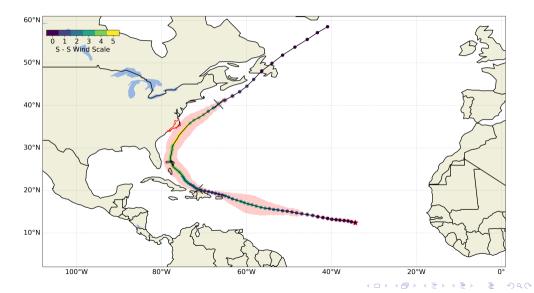


Step 1: Selection of impactful storms Define an area of influence

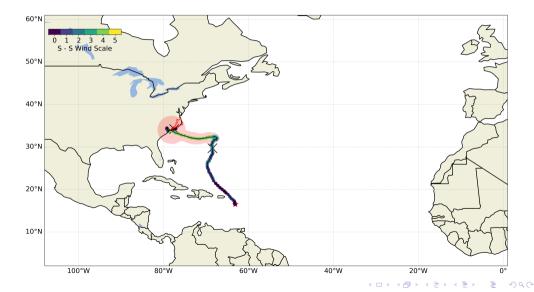


Step 1: Selection of impactful storms

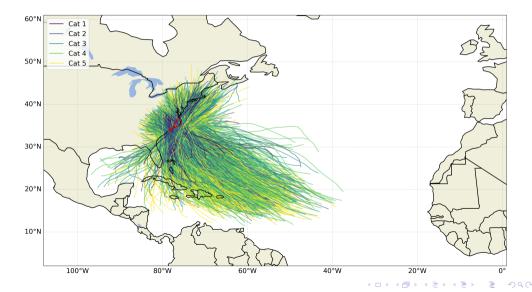
Reducing track length to reduce computation - Key assumption 1

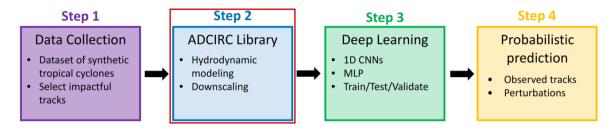


Step 1: Selection of impactful storms High-variance dataset with some outliers



Step 1: Selection of impactful storms Subset of 1,813 tracks that affect North Carolina

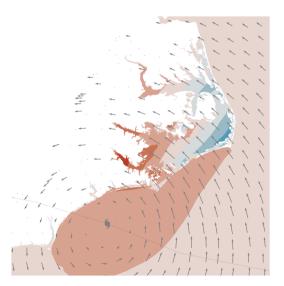




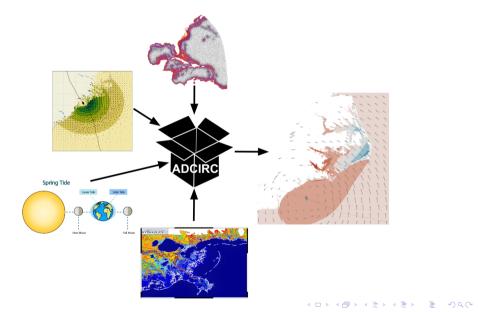
Step 2: Hydrodynamic modeling with ADCIRC

ADvanced CIRCulation (ADCIRC) model:

- Unstructured, variable resolution meshes
- Finite element in space and finite differences in time
- Solves the Generalized Wave Continuity and the momentum conservation equations
- Well validated in the U.S. Gulf and Atlantic coasts
- Very efficient in high-performance computing systems



Step 2: Hydrodynamic modeling with ADCIRC



Step 2: Hydrodynamic modeling with ADCIRC SABv5 – floodplains only in NC

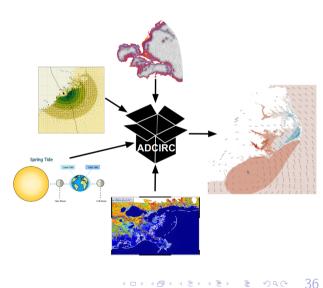
N

Woodruff (2023)

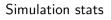
Step 2: Hydrodynamic modeling with ADCIRC SABv5 – Finer resolution of 60 m

Step 2: Hydrodynamic modeling with ADCIRC Simulations setup

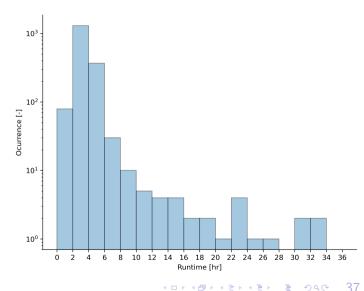
- Same mesh and nodal attributes
- Almost the same configuration
 - o 2-month representative period (Key assumption 2)
 - o Random date \implies random tide
- Wind field: Holland symmetric model
 o No need to compute extra info.
 o Coords, WS, P, and RMW
- 2-months tide-only simulation
- HPC systems
 - o NCSU Hazel
 - o Purdue Anvil
 - o TACC Stampede2 (RIP)



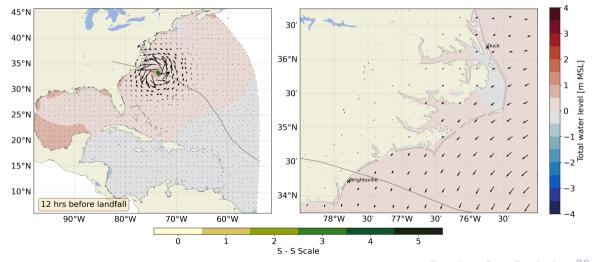
Step 2: Hydrodynamic modeling with ADCIRC Postprocessing simulations



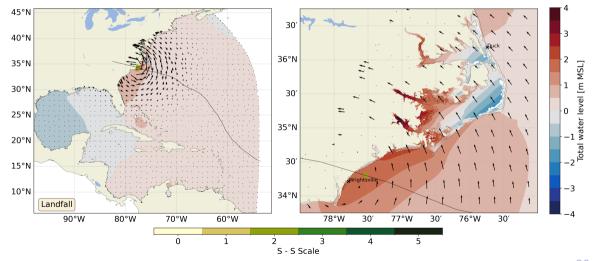
- o $1.3M\ \text{cpu}$ hours
- o Wall clock time ranged from 1.2 to 33 hours
- o Mean wall clock time of 3.7 hours
- o **17T** of data



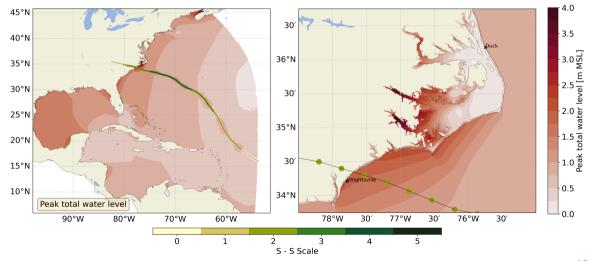
Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – 12 hrs before landfall



Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – at landfall

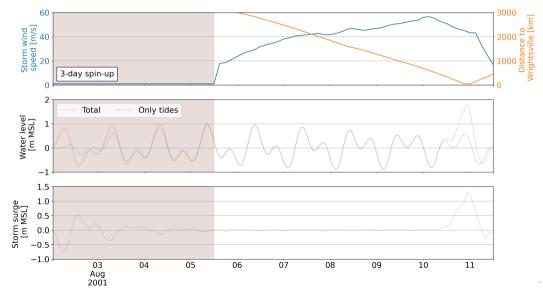


Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – max. water level

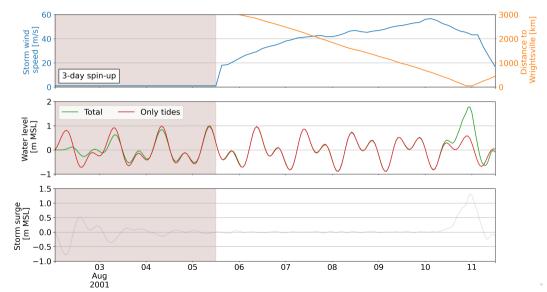


<ロト 4 個 ト 4 臣 ト 4 臣 ト 臣 の 9 (40)

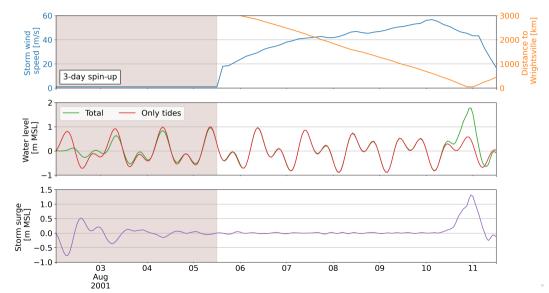
Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – Time series at Wrightsville NOAA tide gauge



Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – Time series at Wrightsville NOAA tide gauge



Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – Time series at Wrightsville NOAA tide gauge



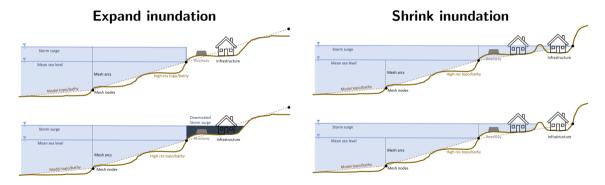
Step 2: Hydrodynamic modeling with ADCIRC Storm 0 – Time series at Duck NOAA tide gauge



Step 2: Downscaling with Kalpana

Kalpana's Static Downscaling method: peak total water level output to high-res raster

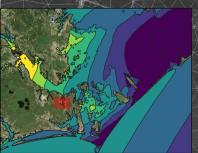
Use of a high-resolution topo DEM to increase ADCIRC resolution and to expand or shrink the inundation extent

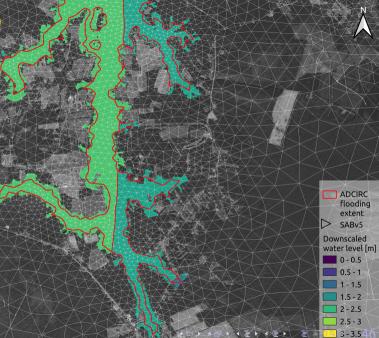


github.com/ccht-ncsu/Kalpana

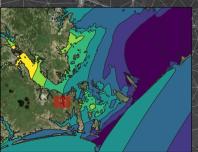
Rucker et al. (2021)

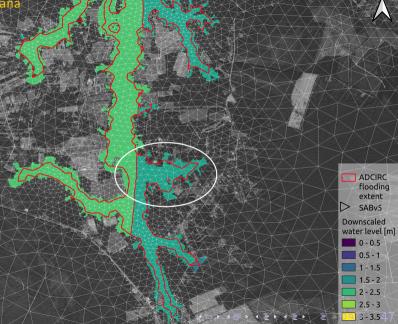
Step 2: Downscaling with Kalpana Newse River, NC





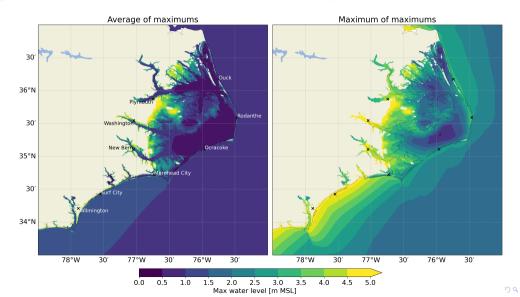
Step 2: Downscaling with Kalpana Newse River, NC

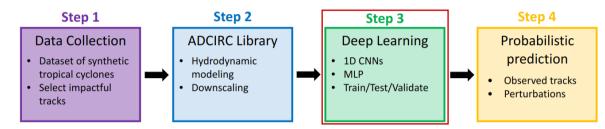




Step 2: Downscaling with Kalpana

Aggregated downscaled peak total water level stats - Where not to buy a house in NC?

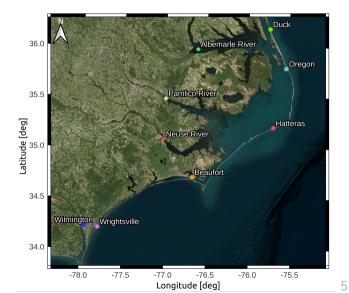




Step 3: Deep learning Data preprocessing – Extract peak total water level from downscaled maps

Stations to predict

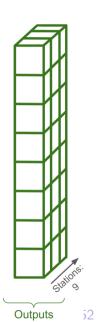
- NOAA tide gauges:
 - o Duck
 - o Oregon inlet
 - o Cape Hatteras
 - o Beaufort
 - o Wilmington
 - o Wrightsville
- NC rivers:
 - o Albemarle
 - o Pamlico
 - o Neuse



Step 3: Deep learning Data preprocessing – Zero padding & masking

Outputs:

o Peak total water level at 9 stations

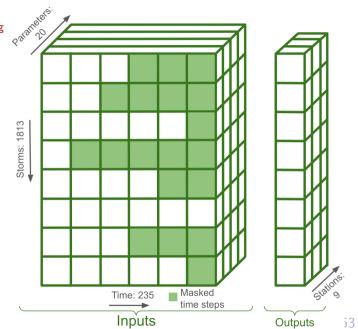


Step 3: Deep learning Data preprocessing – Zero padding & masking

Outputs:

o Peak total water level at 9 stations

Inputs:



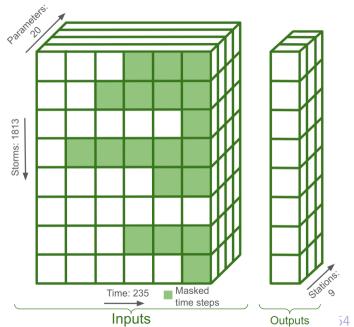
Step 3: Deep learning Data preprocessing – Zero padding & masking

Outputs:

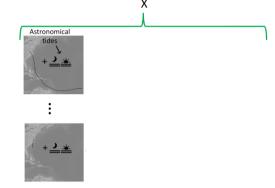
o Peak total water level at 9 stations

Inputs:

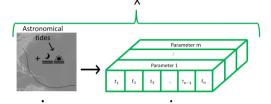
- o Max. wind speed
- o Min. pressure
- o Rad. to max. wind speed
- o *u* and *v* vectors of forward speed
- o FFT of 5 inputs above
- o Distance from eye to the 9 stations
- o Offshore tide

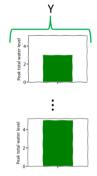


Neural network architecture: 1D CNNs and dense layers

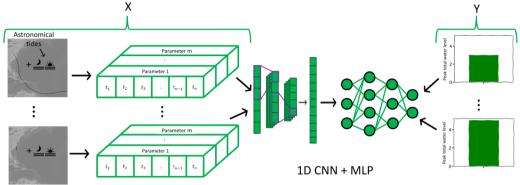


Neural network architecture: 1D CNNs and dense layers

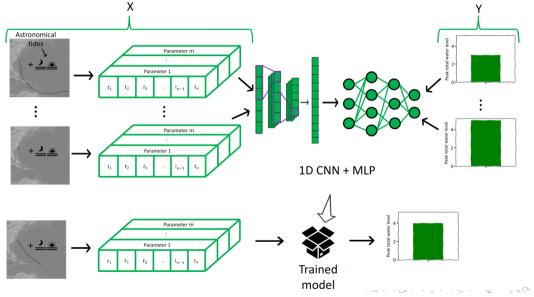




Neural network architecture: 1D CNNs and dense layers



Neural network architecture: 1D CNNs and dense layers



Summary of hyperparameters, data & architecture

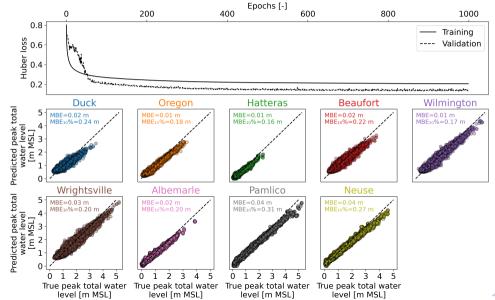
- Hyperparameters
 - o Loss: Huber
 - o Optimizer: RMSProp
 - o Learning rate: 10^{-4}
 - o Epochs: 1,000
 - o Batch size: 100
- Data
 - o 20 input time series
 - o 9 time-constant outputs
 - o 15% for testing
 - o $\,80\%$ of remaining 85% for training
 - o 20% of remaining 85% for validation
 - o Standard scaling

- Architecture
 - o 3 blocks of 1D CNNs
 - (16, 32 & 64 channels)
 - o Batch normalization
 - o Max pooling (size 2)
 - o 4 blocks of dense layers
 - (1728, 64, 32 & 9 neurons)
 - o ReLU activation function
 - o Dropout 20%
 - o Many-to-one

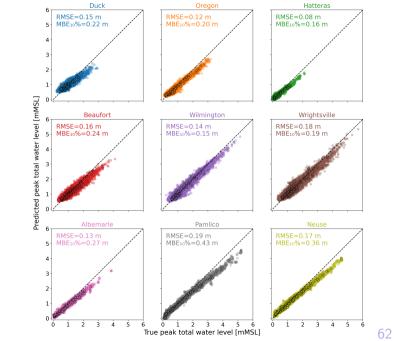
Step 3: Deep learning Metrics

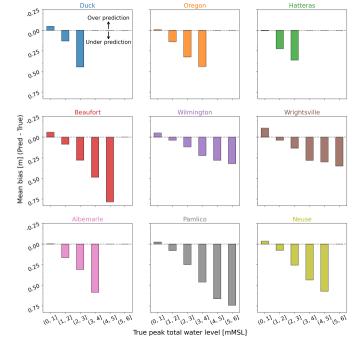
Mean bias error $MBE of largest 10\% ext{ Root mean squared error} ext{ MBE} = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i) ext{ MBE}_{10\%} = \frac{1}{N} \sum_{i=0.9 \times N}^{N} (Y_i - \hat{Y}_i) ext{ RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2}{N}} \\ (1) ext{ (2)} ext{ (3)}$

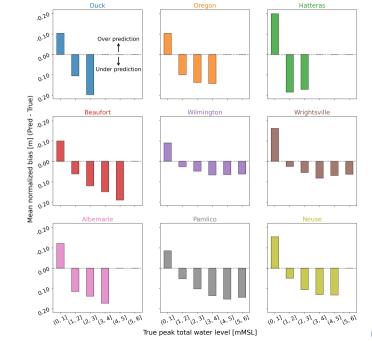
Step 3: Neural network validation

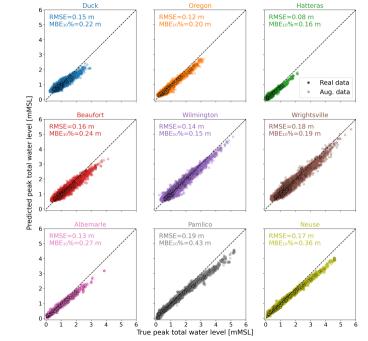


วจ๙ 61



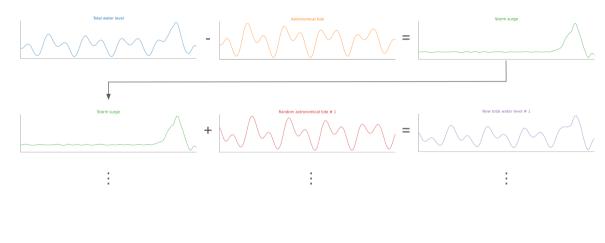




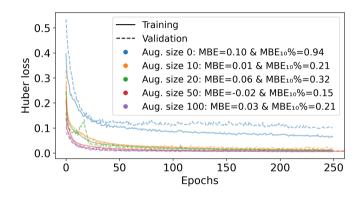


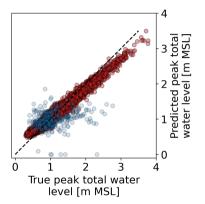
Step 3: Data augmentation methodology

Key assumption 3 – Storm surge and astronomical tides are independent

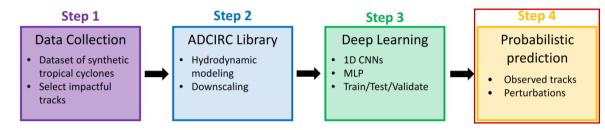


Step 3: Augmentation size validation Simpler NN at Beaufort

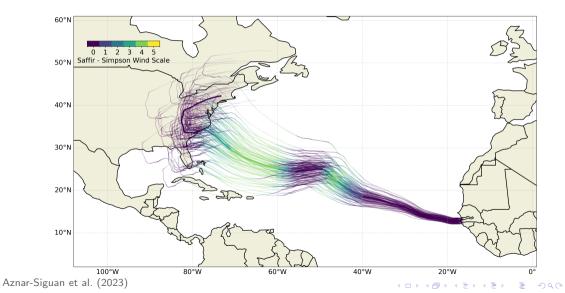




▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のくで

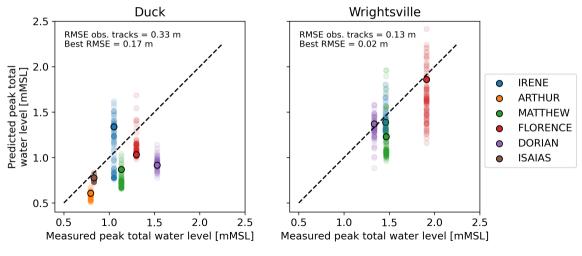


Step 4: Probabilistic prediction Florence (2018) perturbations with CLIMADA



Step 4: Probabilistic prediction

Comparison with measured peak water levels



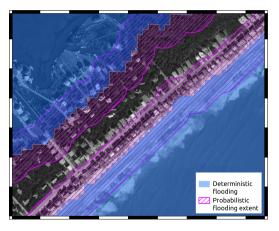
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

70

National Centers for Environmental Information (2023)

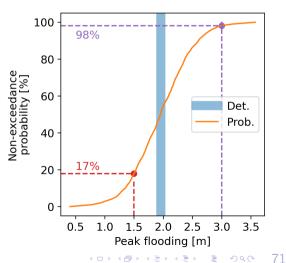
Step 4: Probabilistic prediction Possible outcomes of a probabilistic prediction framework

Probabilistic 2D results

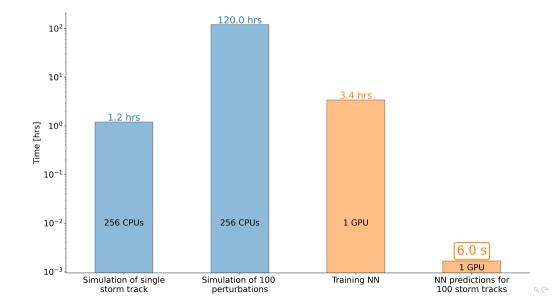


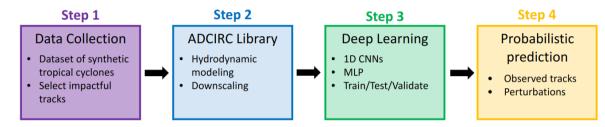
Plots made with synthetic data

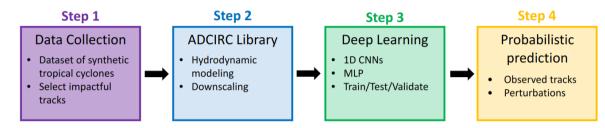
Probabilistic results at stations



Step 4: Probabilistic prediction Runtimes comparison







Our NN is a few steps closer to process-based models!

Takeaways

- 1. The NN required a lot of data for training.
- 2. The assumption that storm surge and astronomical tides are independent allowed us to increase the training dataset 50 times.
- 3. The NN performed well; the stations-averaged RMSE was 15 cm.
- 4. The extremes were underestimated; the NN's bias increased linearly with the magnitude of the true peak total water level.
- 5. The NN's prediction time allowed us to implement a probabilistic prediction framework.

(日) (個) (目) (目) (目) (75)

Future work

1. Improve the NN's performance for extremes by trying other augmentation methodologies or creating more data.

Neural networks will replace

ADCIRC forever!

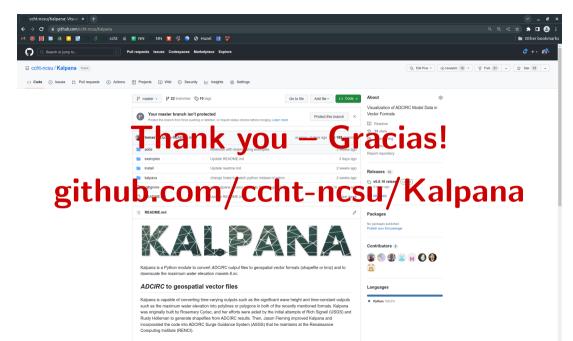
2. Extend the NN framework to predict 2D spatially continuous maps of peak total water level for the NC coast by replacing the dense layers with transpose 2D CNNs.

My Neural network:

3. Use a more sophisticated tool to perturb observed tracks so the performance of the probabilistic prediction framework can be quantified.

Acknowledgments

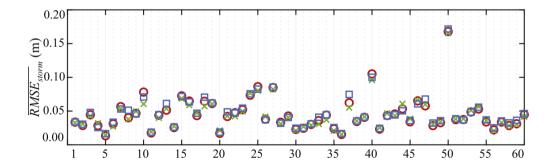
77



Statistical learning methods to predict storm surge

Started many years ago

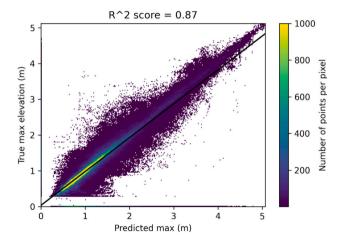
- o Moving least squared applied to waves and surge risk assessment (Taflanidis et al. 2012)
- o Gaussian-processes for spatio-temporal emulation of storm surge (Kyprioti et al. 2023)



Deep learning to predict storm surge Peak storm surge from "storm track"

Peak storm surge from wind field at Texas & Alaska (Pachev et al. 2023)

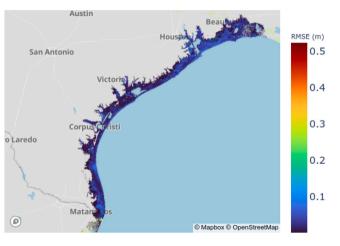
- o 446 synthetic tracks (TX)
- o Peak storm surge at mesh vertex
- $o\;$ Wind field interpolated to the mesh
- o Statistics to represent the temporal component
- o Point-wise formulation (X_i, y_i)
- o One-to-one neural network



Deep learning to predict storm surge Peak storm surge from "storm track"

Peak storm surge from wind field at Texas & Alaska (Pachev et al. 2023)

- o 446 synthetic tracks (TX)
- o Peak storm surge at mesh vertex
- $o\;$ Wind field interpolated to the mesh
- o Statistics to represent the temporal component
- o Point-wise formulation (X_i, y_i)
- o One-to-one neural network

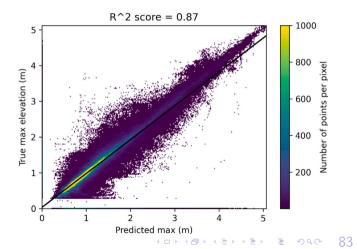


ふしゃ 本価 を えき を す しゃ くら や

Deep learning to predict storm surge Neural networks and storm surge process-based simulations

Peak storm surge from wind field at Texas & Alaska (Pachev et al. 2023)

- o 446 ADCIRC simulations of synthetic storms (TX)
- o Wind field interpolated to the mesh
- o Peak storm surge at mesh vertex
- o One-to-one neural network
- No astronomical tide
- o No temporal component
- o Data tailored for extremes



Statistical learning vs deep learning

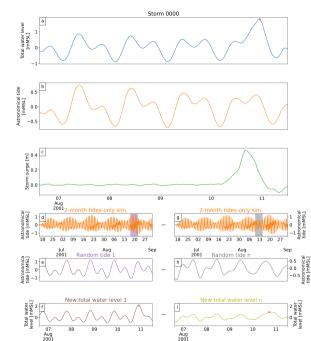
	Pros	Cons
Statistical learning	o High interpretability o Easy implementation o Cheap to train	o Bad generalization o Bad for non-linearities o Cheap to train
Deep learning	o Great for non-linearities o Good generalization	o Bad interpretabilityo Hard implementationo Expensive to train

Deep learning

Storm surge observations vs process-based models

	Pros	Cons
Storm surge observations	o Global coverage o No need for models	o Not full track o Obs. are scarce o Eye is not captured
Process-based models	o Full track o Eye dynamics o Large domains	o A lot of data o Models are expensive

- o Decomposed total water level
- o Assumed surge and tides are independent
- o Computed storm surge time series
- o Add random tides to the storm surge time series
- o Repeat *n* times per storm



Step 3: Deep learning Neural network architecture: 1D CNNs and dense layers

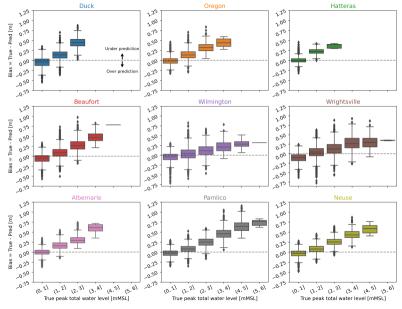


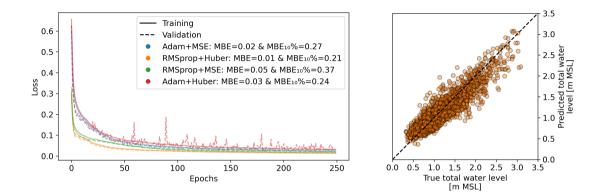


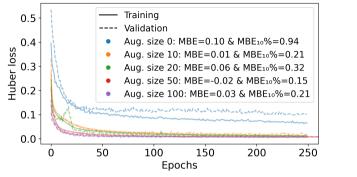
- 88

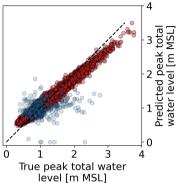
- イロト イポト イモト イモト - モ

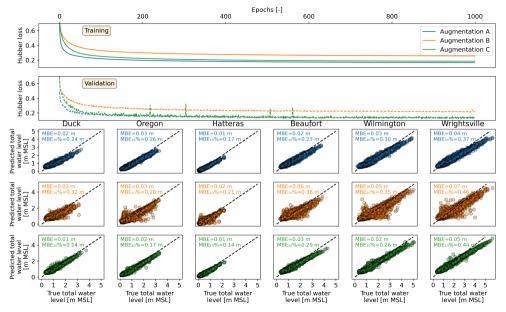
89



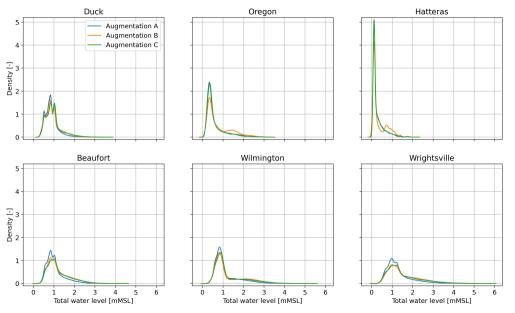




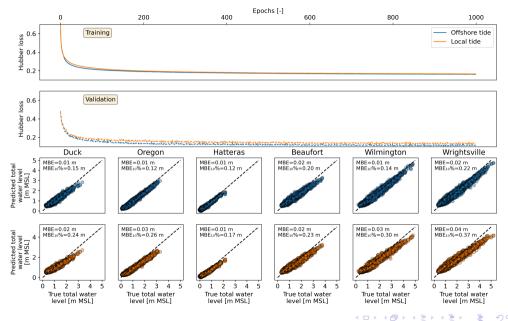




<ロ><回><個><国><国><国><国><国><国><国><国><国><国><000 92



◆□ > ◆母 > ◆臣 > ◆臣 > ○目 ● ○○



E nac 94

