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Rapid Assessment of Wave and Surge Risk during
Landfalling Hurricanes: Probabilistic Approach

Alexandros A. Taflanidis, A.M.ASCE1; Andrew B. Kennedy, M.ASCE2; Joannes J. Westerink3;
Jane Smith, M.ASCE4; Kwok Fai Cheung5; Mark Hope6; and Seizo Tanaka7

Abstract: Aprobabilistic framework is presented for evaluation of hurricane wave and surge risk with particular emphasis on real-time automated
estimation for hurricanes approaching landfall. This framework has two fundamental components. The first is the development of a surrogatemodel
for the rapid evaluation of hurricane waves, water levels, and run-up based on a small number of parameters describing each hurricane: hurricane
landfall location and heading, central pressure, forward speed, and radius of maximum winds. This surrogate model is developed using a response
surface methodology fed by information from hundreds of precomputed, high-resolution Simulating Waves Nearshore (SWAN) 1 Advanced
CirculationModel forOceanic,Coastal andEstuarineWaters (ADCIRC) andOne-DimensionalBoussinesqModel (BOUSS-1D) runs. For a specific
set of hurricane parameters (i.e., a specific landfalling hurricane), the surrogate model is able to evaluate themaximumwave height, water level, and
run-up during the storm at a cost that is more than seven orders of magnitude less than the high-fidelity models and thus meets time constraints
imposed by emergencymanagers and decisionmakers. The second component of this framework is a description of the uncertainty in the parameters
used to characterize the hurricane through appropriate probability models, which then leads to quantification of hurricane risk in terms of
a probabilistic integral. This integral is then efficiently computed using the already established surrogate model by analyzing thousands of different
scenarios (based on the aforementioned probabilistic description). This allows the rapid computation of, for example, the storm surge that might be
exceeded 10% of the time based on hurricane parameters at 48 h from landfall. Finally, by leveraging the computational simplicity and efficiency of
the surrogate model, a simple stand-alone PC-based risk-assessment tool is developed that allows nonexpert end users to take advantage of the full
potential of the framework. The proposed framework ultimately facilitates the development of a rapid assessment tool for real-time implementation
but requires a considerable upfront computational cost to produce high-fidelity model results. As an illustrative example, implementation of
hurricane risk estimation for the Island of Oahu in Hawaii is presented; results demonstrate the versatility of the proposed approach for delivering
accurate tools for real-time hurricane risk estimation that have the ability to cross over technology adoption barriers. DOI: 10.1061/(ASCE)
WW.1943-5460.0000178. © 2013 American Society of Civil Engineers.
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Introduction

Hurricane surge risk assessment has received increased attention
in the past decade, partly in response to the destructive 2004, 2005,
and 2008 hurricane seasons (Dietrich et al. 2010; Kennedy et al.

2011a, b). Conventional approaches to this assessment are based on
parametric or nonparametric analysis of data from historical storms
(Borgman et al. 1992) or on simulation of hurricane design events. A
different methodology, initially presented in 1975 (Ho and Myers
1975; Myers 1975) and frequently referenced as the joint probability
method, relies on a simplified description of hurricane scenarios
through a small number of model parameters (Resio et al. 2009).
Description of the uncertainty in these parameters, through appro-
priate probability models, leads to a probabilistic characterization of
the hurricane risk. This risk is ultimately expressed as a probabilistic
integral over the uncertain parameter space, and its estimation requires
numerical evaluation of the hurricane inundation for a large number of
scenarios resulting from the adopted probabilistic description of the
model parameters (Resio et al. 2009; Toro et al. 2007). This prob-
abilistic framework is increasingly being adopted as a tool for hur-
ricane risk evaluation (Irish et al. 2009, 2011; Niedoroda et al. 2008).
Other measures for such risk evaluation include the National Oceanic
and Atmospheric Administration’s (NOAA’s) maximum of maxi-
mum (MOM) storm surge levels for Saffir-Simpson hurricane cate-
gories 1–5 (www.nhc.noaa.gov) and probabilistic surge (P-surge)
estimates of surge exceedence likelihood for approaching hurricanes
based on Sea, Lake and Overland Surges from Hurricanes (SLOSH)
model simulations (Glahn et al. 2009).

A significant recent advance in hurricane surge modeling is
the development of high-fidelity numerical simulation models for
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A time-dependent surrogate model for storm surge
prediction based on an artificial neural network
using high-fidelity synthetic hurricane modeling
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Abstract Expedient prediction of storm surge is required for emergency managers to

make critical decisions for evacuation, structure closure, and other emergency responses.

However, time-dependent storm surge models do not exist for fast and accurate prediction

in very short periods on the order of seconds to minutes. In this paper, a time-dependent

surrogate model of storm surge is developed based on an artificial neural network with

synthetic simulations of hurricanes. The neural network between six input hurricane

parameters and one target parameter, storm surge, is trained by a feedforward backprop-

agation algorithm at each of 92 uniform time steps spanning 45.5 h for each storm. The

basis data consist of 446 tropical storms developed from a joint probability model that was

based on historical tropical storm activity in the Gulf of Mexico. Each of the 446 storms

was modeled at high fidelity using a coupled storm surge and nearshore wave model. Storm

surge is predicted by the 92 trained networks for approaching hurricane climatological and

track parameters in a few seconds. Furthermore, the developed surrogate model is vali-

dated with measured data and high-fidelity simulations of two historical hurricanes at four

points in southern Louisiana. In general, the neural networks at or near the boundary

between land and ocean are well trained and model predictions are of similar accuracy to

the basis modeling suites. Networks based on modeling results from complex inland

locations are relatively poorly trained.

Keywords Time-dependent surrogate model � Artificial neural network �
Storm surge � High-fidelity model
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Surrogate modeling for peak or time-dependent storm
surge prediction over an extended coastal region using
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Abstract This paper investigates the development of a kriging surrogate model for storm

surge prediction utilizing an existing database of high-fidelity, synthetic storms. This

surrogate model (metamodel) provides a fast-to-compute mathematical approximation to

the input/output relationship of the computationally expensive simulation model that

created this database. The implementation is considered over a large coastal region

composed of nearshore nodes (locations where storm surge is predicted) and further

examines the ability to provide time-series forecasting. This setting creates a high-di-

mensional output (over a few thousand surge responses) for the surrogate model with

anticipated high spatial/temporal correlation. Kriging is considered as a surrogate model,

and special attention is given to the appropriate parameterization of the synthetic storms,

based on the characteristics of the given database, to determine the input for the metamodel

formulation. Principal component analysis (PCA) is integrated in this formulation as a

dimension reduction technique to improve computational efficiency, as well as to provide

accurate and continuous predictions for time-dependent outputs without the need to

introduce time averaging in the time-series forecasting. This is established by leveraging

the aforementioned correlation characteristics within the initial database. A range of dif-

ferent implementation choices is examined within the integrated kriging/PCA setting, such

as the development of single or multiple metamodels for the different outputs. The

metamodel accuracy for inland nodes that have remained dry in some of the storms in the

initial database is also examined. The performance of the surrogate modeling approach is

evaluated through a case study, utilizing a database of 446 synthetic storms for the Gulf of

Mexico (Louisiana coast). The output considered includes time histories for 30 locations

over a period of 45.5 h with 92 uniform time steps, as well as peak responses over a grid of

& Alexandros A. Taflanidis
a.taflanidis@nd.edu

1 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre
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Multi-Output Artificial Neural Network for Storm Surge Prediction in North
Carolina
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Abstract

During hurricane seasons, emergency managers and other decision makers need accurate and ‘on-time’

information on potential storm surge impacts. Fully dynamical computer models, such as the ADCIRC

tide, storm surge, and wind-wave model take several hours to complete a forecast when configured at high

spatial resolution. Additionally, statically meaningful ensembles of high-resolution models (needed for

uncertainty estimation) cannot easily be computed in near real-time. This paper discusses an artificial

neural network model for storm surge prediction in North Carolina. The network model provides fast,

real-time storm surge estimates at coastal locations in North Carolina. The paper studies the performance

of the neural network model vs. other models on synthetic and real hurricane data.

Keywords: feedforward artificial neural network, storm surge, hurricane, regression

1. Introduction

During hurricane seasons, emergency managers and other decision makers need accurate and ‘on-

time’ information on potential storm surge impacts. Fully dynamical computer models, such as the

ADCIRC tide, storm surge, and wind-wave model (Westerink et al., 2008), when configured at high spatial

resolution, typically take several hours to complete a forecast. This complicates computing statically

meaningful ensembles of high-resolution models (needed for uncertainty estimation) in near real-time.

Contrary to this, an artificial neural network (ANN) can be an accurate and fast non-parametric model

with computational complexity (Skiena, 1998) of only O(N2) for a two layer feedforward neural network

with N neurons in the hidden layer.

This paper focuses on design, implementation, and testing of an ANN model for storm surge prediction

in North Carolina. The inputs to the model are hurricane parameters such as its location, central pressure,

and radius to maximum winds. The outputs are the storm surge predictions for specified locations along

∗Corresponding author
Email addresses: bezuglova@benedict.edu (Anton Bezuglov), bblanton@renci.org (Brian Blanton),

santiagor@benedict.edu (Reinaldo Santiago)
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A B S T R A C T

Rapid and accurate prediction of peak storm surges across an extensive coastal region is necessary to inform
assessments used to design the systems that protect coastal communities’ life and property. Significant advances
in high-fidelity, physics-based numerical models have been made in recent years, but use of these models for
probabilistic forecasting and probabilistic hazard assessment is computationally intensive. Several surrogate
modeling approaches based on existing databases of high-fidelity synthetic storm surge simulations have been
recently suggested to reduce computational burden without substantial loss of accuracy. In these previous
studies, however, the surrogate modeling approaches relied on a tropical cyclone condition at one moment
(usually at or near landfall), which is not always most correlated with the peak storm surge. In this study, a
new one-dimensional convolutional neural network model combined with principal component analysis and
a k-means clustering (C1PKNet) is presented that can rapidly predict peak storm surge across an extensive
coastal region from time-series of tropical cyclone conditions, namely the storm track. The C1PKNet model
was trained and cross-validated for the Chesapeake Bay area of the United States using existing database
of 1031 high-fidelity storm surge simulations, including both landfalling and bypassing storms. Moreover,
the performance of the C1PKNet model was evaluated based on observations from three historical hurricanes
(Hurricane Isabel in 2003, Hurricane Irene in 2011, and Hurricane Sandy in 2012). The results indicate that the
C1PKNet model is computationally efficient and can predict peak storm surges from realistic tropical cyclone
track time-series. We believe that this new surrogate model can enhance coastal resilience by providing rapid
storm surge predictions.

1. Introduction

Storm surge generated by tropical cyclones (TC) is one of the
most devastating threats to coastal communities. In the United States
(US) alone, storm surge events have caused hundreds of billions of
dollars in economic damage and have been responsible for about half
of the fatalities from Atlantic TCs (1963–2012) (Rappaport, 2014).
Historically, the US’s costliest natural disaster was Hurricane Katrina
(2005), where the storm surge exceeded 7.5 m above sea level, causing
at least $170 billion of property damage (Robertson et al., 2007;
Blake et al., 2011; Smith, 2020). Furthermore, the single deadliest
natural disaster in the US was the unnamed Galveston hurricane (1900)
that caused at least 8000 deaths, most of which were storm-surge
related (Blake et al., 2011). To mitigate the damages that can be caused
by storm surge, several studies have emphasized the need for a rapid
and accurate storm surge model that can support not only probabilistic

∗ Corresponding author.
E-mail address: jwlee89@vt.edu (J.-W. Lee).

storm surge forecasting, where surge predictions for a large number
of storms are required in order to characterize uncertainty associated
with uncertainty in the storm track (Glahn et al., 2009), but also robust
probabilistic storm surge hazard assessment, where surge predictions
for a large number of storms are also required to both accurately
characterize mean hazard statistics and to account for uncertainty in
the hazard estimation (Resio et al., 2007).

Physics-based numerical models, such as SLOSH (Sea, Lake, and
Overland Surges from Hurricanes, Jelesnianski, 1992) and ADCIRC
(ADvanced CIRCulation, Luettich et al., 1992), are widely used to
predict storm surges. Over the last several decades, significant advances
in physics-based model frameworks allow highly accurate simulation
of storm surge by both accounting for dominant processes – e.g., wind
surge, wave setup, nonlinear advection – and by employing high grid

https://doi.org/10.1016/j.coastaleng.2021.104024
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A B S T R A C T

Risk-informed coastal management requires assessment of extreme flood hazards from a large number of
storm scenarios. To account for impact of climate change based on potential variations in greenhouse gas
concentration and climate models, the number of storm scenarios would be even larger. Although physics-
based hydrodynamic numerical models could predict flood levels and their impact from storm scenarios, the
high computational cost of the solutions hinders the ability to perform the required number of simulations.
Towards alleviating that cost, we show that physics-based simulations can be combined with Artificial Neural
Network models to support more faster and effective prediction of low-probability events that account for
uncertainties associated with climate change. We show this capability by predicting 10, 100, and 1,000 years
return periods for peak storm surge height at a specific location on an idealized coastline. A large data set of
synthetic tropical cyclones is generated from physics-based simulations and used for training, validating and
testing the constructed neural network model. The ANN predicted values are validated against values from the
physics-based simulations. The advantage of the combined approach is that, once the training was complete,
it was performed in a fraction of the time required for the physics-based simulations.

1. Introduction

In the past, most efforts dealing with flood hazards from Tropical
Cyclones (TC) stressed recovery and restoration. Today’s computational
tools and capabilities have allowed for more accurate predictions of
the path and characteristics of extreme weather events and associated
flood risks including dangerous storm surge. These predictions have
been used for preparation and planning and resulted in saving human
lives and reducing economic losses. Still, enhancing coastal resilience
through long-term flood mitigation and adaptation strategies requires
quantitative assessment of present and future flood hazards, especially
in the planning phases.

Probabilistic flood hazard assessment, required for risk-informed
coastal planning and management, aim at quantifying flood levels with
various return periods rather than predicting surge from a specific
storm as done by deterministic and ensemble forecasting (Georgas
et al., 2016). Still, such a probabilistic analysis is challenging because it
requires a broad range of storm scenarios in order to quantify hazards
induced by low-probability high-consequence events, e.g. events with
0.1% chance of occurrence (Marsooli et al., 2019). Because the number
of historical storms is limited and water level measurements are spa-
tially sparse, numerical hydrodynamic models are usually employed to
simulate synthetic storms, which is a computationally demanding task.
As an example, for a reliable estimate of the 𝑁-year flood level (i.e. a
flood level that has 1∕𝑁 percent chance of exceedance in any given

∗ Corresponding author.
E-mail address: mayyad@stevens.edu (M. Ayyad).

year), one should consider 10 × 𝑛 × 𝑁 storm scenarios (Wallingford
et al., 2000) where 𝑛 represents the annual storm frequency. Addition-
ally, to address the impact of uncertainties in future climate conditions,
projections from multiple climate models and for different greenhouse
gas concentration trajectories should be considered in storm surge
scenarios (Lin et al., 2019). For instance, to estimate the flood levels
with a return period of 𝑁 = 1000 years using a frequency of five storms
per year and assuming an ensemble of six climate models with two
scenarios of greenhouse gas concentration trajectories (e.g. RCP2.6 and
RCP8.5), one needs to consider 10 × 1000 × 5 × 6 × 2 = 600, 000 storm
scenarios to reliably predict climate change impacts on the 1000-year
flood level. The implementation of hydrodynamic models for such a
large number of storm scenarios is an extremely computation-intense
task (Bevacqua et al., 2019).

In current approaches to reduce the computational burden, flood
hazard assessment is based on a series of assumptions. For instance, it
is a common practice to consider a limited number of storm scenarios
that mainly address high- to moderate-probability hazards and utilize
extrapolation approaches to estimate low-probability hazards. The reli-
ability of such an approach is questionable as the results are subject to
large uncertainties. To improve probabilistic flood hazard capabilities
that account for the impact of climate change on coastal flood hazards,
it is essential to develop and employ novel and innovative approaches

https://doi.org/10.1016/j.oceaneng.2021.110435
Received 7 April 2021; Received in revised form 26 October 2021; Accepted 19 December 2021
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ABSTRACT: This study proposes and assesses a methodology to obtain high-quality probabilistic predictions and
uncertainty information of near-landfall tropical cyclone–driven (TC-driven) storm tide and inundation with limited time
and resources. Forecasts of TC track, intensity, and size are perturbed according to quasi-random Korobov sequences of
historical forecast errors with assumed Gaussian and uniform statistical distributions. These perturbations are run in an
ensemble of hydrodynamic storm tide model simulations. The resulting set of maximum water surface elevations are
dimensionality reduced using Karhunen–Loève expansions and then used as a training set to develop a polynomial chaos
(PC) surrogate model from which global sensitivities and probabilistic predictions can be extracted. The maximum water
surface elevation is extrapolated over dry points incorporating energy head loss with distance to properly train the surro-
gate for predicting inundation. We find that the surrogate constructed with third-order PCs using elastic net penalized
regression with leave-one-out cross validation provides the most robust fit across training and test sets. Probabilistic predic-
tions of maximum water surface elevation and inundation area by the surrogate model at 48-h lead time for three past U.S.
landfalling hurricanes (Irma in 2017, Florence in 2018, and Laura in 2020) are found to be reliable when compared to best
track hindcast simulation results, even when trained with as few as 19 samples. The maximum water surface elevation is
most sensitive to perpendicular track-offset errors for all three storms. Laura is also highly sensitive to storm size and has
the least reliable prediction.

SIGNIFICANCE STATEMENT: The purpose of this study is to develop and evaluate a methodology that can be
used to provide high-quality probabilistic predictions of hurricane-induced storm tide and inundation with limited time
and resources. This is important for emergency management purposes during or after the landfall of hurricanes. Our
results show that sampling forecast errors using quasi-random sequences combined with machine learning techniques
that fit polynomial functions to the data are well suited to this task. The polynomial functions also have the benefit of
producing exact sensitivity indices of storm tide and inundation to the forecasted hurricane properties such as path,
intensity, and size, which can be used for uncertainty estimation. The code implementing the presented methodology is
publicly available on GitHub.

KEYWORDS: Ensembles; Machine learning; Probability forecasts/models/distribution; Storm surges;
Tropical cyclones; Uncertainty

1. Introduction

Tropical and subtropical storms build up storm surges that
affect populated coastal regions in the United States and in-
ternationally. The temporarily higher sea levels from these
storm surges result in widespread inundation of coastal low-
lying areas, invoking flood and wave damage to residential
and commercial structures. Storm surges from named storm
events are estimated to cause billions of dollars in damages in
the United States annually (NCEI 2022). Under the require-
ments of the Consumer Option for an Alternative System to
Allocate Losses (COASTAL) Act, the National Oceanic and
Atmospheric Administration (NOAA) is responsible for de-
termining the extent of storm surge and storm tide to inform
response and application of relief funding from the Federal

Emergency Management Administration (FEMA) after a
storm event.

While currently not being used, in this project we are inves-
tigating the application of a Hurricane Surge On-demand
Forecast System (HSOFS) that could be employed when a
tropical cyclone (TC) approaches and makes landfall along
U.S. coastlines to provide predictions of TC-driven storm
surge and inundation (Vinogradov et al. 2018). HSOFS uses a
hydrodynamic storm tide model to simulate coastal water lev-
els and inundation on high-resolution unstructured meshes,
which may also be coupled to a wind-wave model to capture
wave setup effects (Dietrich et al. 2011; Moghimi et al. 2020).
The system would be utilized to produce either 1) near-landfall
forecasts for support of recovery and response in the immediate
aftermath of TC landfall or 2) hindcasts for allocating flooding-
related insurance losses as part of the COASTALAct (Abdolali
et al. 2021). But as with any modeling, the uncertainty in the re-
sults is dependent on the uncertainty and accuracy of the inputCorresponding author: William J. Pringle, wpringle@anl.gov

DOI: 10.1175/AIES-D-22-0040.1 e220040
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A B S T R A C T

Storm surge is a major natural hazard in coastal regions, responsible both for significant property damage and
loss of life. Accurate, efficient models of storm surge are needed both to assess long-term risk and to guide
emergency management decisions. While high-fidelity regional- and global-ocean circulation models such as
the ADvanced CIRCulation (ADCIRC) model can accurately predict storm surge, they are very computationally
expensive. Consequently, there have been a number of efforts in recent years to develop data-driven surrogate
models for storm surge.

Here we develop a novel surrogate model for peak storm surge prediction based on a multi-stage approach.
In the first stage, points are classified as inundated or not. In the second, the level of inundation is predicted
for each point. Additionally, we propose a new formulation of the surrogate problem in which storm surge is
predicted independently for each point. This new formulation has the potential to allow for predictions to be
made directly for locations not present in the training data, and significantly reduces the number of required
model parameters.

We demonstrate our modeling framework on two study areas: the Texas coast and the northern portion
of the Alaskan coast. For Texas, the model is trained with a database of 446 synthetic hurricanes. The model
is able to accurately match ADCIRC predictions on a test set of synthetic storms. We further present a test of
the model on Hurricanes Ike (2008) and Harvey (2017). For both storms, we find that the model predictions
have comparable accuracy to ADCIRC hindcasts when compared to actual observational data. For Alaska, the
model is trained on a dataset of 109 historical surge events. We test the surrogate model on actual surge events
including the recent Typhoon Merbok (2022) that take place after the events in the training data. As with the
Texas dataset, the surrogate model achieves decent performance against observational data. In both cases, the
surrogate models are many orders of magnitude faster than ADCIRC.

1. Introduction

In the last four decades, tropical cyclones have caused over one tril-
lion dollars of damage in the United States alone (National Centers for
Environmental Information (NCEI), 2022). Storm surge is directly re-
sponsible for much of the property damage from tropical cyclones (Neu-
mann et al., 2015) and nearly half of the fatalities (Rappaport, 2014).
Hurricane Katrina (2005) was the costliest hurricane on US record,
with hundreds of billions of dollars in property damage and over 1200
deaths, most of which were caused by the extreme storm surge (Blake
et al., 2011). Thus, predicting storm surges is crucial in order to assess
the long term risk to coastal infrastructure and property from tropical

∗ Corresponding author.
E-mail addresses: benjaminpachev@utexas.edu (B. Pachev), pa2178@nyu.edu (P. Arora), carlos.delcastillo@utexas.edu (C. del-Castillo-Negrete),

eirik.valseth@nmbu.no, eirik@oden.utexas.edu (E. Valseth), clint@oden.utexas.edu (C. Dawson).

cyclones. While high-fidelity physics-based models of storm surge such
as the ADvanced CIRCulation (ADCIRC) model (Luettich et al., 1992;
Pringle et al., 2021) have been developed, they require significant
computational resources. This makes statistical risk studies infeasible
or limited in scope. One workaround is to use a fast, low-fidelity
physical model such as SLOSH (Sea, Lake, and Overland Surges from
Hurricanes, (Jelesnianski, 1992)). However, low-fidelity models neglect
key physics and consequently can have high errors.

An alternative to physics-based modeling is surrogate modeling, in
which a parametric model is fit to data generated from observations
or outputs of a high-fidelity physical model. An early example of this
approach to modeling storm surge is the storm surge response function

https://doi.org/10.1016/j.coastaleng.2023.104406
Received 31 March 2023; Received in revised form 30 August 2023; Accepted 1 October 2023



4

Motivation

Plans for scholarly reassignment

1. Certificate in deep learning specialization

– Five courses that introduce neural networks and deep learning
– Estimated at 4–5 months

2. Develop a neural network for coastal flooding predictions

– Led by my MS student Tomás Cuevas López

3. Submit proposal on machine learning

– Supplemental funds from DHS Coastal Resilience Center
– Collaborated on proposal to DOD ESTCP
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Motivation
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ADCIRC & Kalpana

ADvanced CIRCulation (ADCIRC) solves modified forms of the shallow water equations ...

We use ADCIRC to represent the long waves of tides and storm surge

– Solves the generalized wave continuity equation (GWCE) for water levels (ζ):

∂2ζ

∂t2
+ τ0

∂ζ

∂t
+
∂J̃x
∂x

+
∂J̃y
∂y

− UH
∂τ0
∂x

− VH
∂τ0
∂y

= 0

– Solves the depth-averaged momentum equations for currents (U,V ):

DU

Dt
− fV = −g

∂

∂x

[
ζ +

ps
gρ0

− αη

]
+
τsx + τbx
ρ0H

+
Mx − Dx

H

DV

Dt
+ fU = −g

∂

∂y

[
ζ +

ps
gρ0

− αη

]
+
τsy + τby
ρ0H

+
My − Dy

H
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ADCIRC & Kalpana
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ADCIRC & Kalpana
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ADCIRC & Kalpana

... and we can downscale the flood maps by using Kalpana

Even the smallest elements can be large compared to coastal infrastructure

– Use a geospatial post-processor to downscale to the ground surface in the DEM

Rucker (2021)

https://doi.org/10.1007/s11069-021-04634-8
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ADCIRC & Kalpana
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ADCIRC & Kalpana
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ADCIRC & Kalpana
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Recent Studies and Motivation

We can generate downscaled flood maps as rasters (grayscale images) ...
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Recent Studies and Motivation

... so can we leverage machine learning techniques that are aimed at images?
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Recent Studies and Motivation

Recent studies have predicted only at specific locations along the coast ...

Multi-Output Artificial Neural Network for Storm Surge Prediction in North
Carolina

Anton Bezuglova,∗, Brian Blantonb, Reinaldo Santiagoa

aMath and Computer Science Dept, Benedict College, 1600 Harden St., Columbia, SC, 29204
bRenaissance Computing Institute, The University of North Carolina at Chapel Hill, 100 Europa Dr., Chapel Hill, NC,

27517

Abstract

During hurricane seasons, emergency managers and other decision makers need accurate and ‘on-time’

information on potential storm surge impacts. Fully dynamical computer models, such as the ADCIRC

tide, storm surge, and wind-wave model take several hours to complete a forecast when configured at high

spatial resolution. Additionally, statically meaningful ensembles of high-resolution models (needed for

uncertainty estimation) cannot easily be computed in near real-time. This paper discusses an artificial

neural network model for storm surge prediction in North Carolina. The network model provides fast,

real-time storm surge estimates at coastal locations in North Carolina. The paper studies the performance

of the neural network model vs. other models on synthetic and real hurricane data.

Keywords: feedforward artificial neural network, storm surge, hurricane, regression

1. Introduction

During hurricane seasons, emergency managers and other decision makers need accurate and ‘on-

time’ information on potential storm surge impacts. Fully dynamical computer models, such as the

ADCIRC tide, storm surge, and wind-wave model (Westerink et al., 2008), when configured at high spatial

resolution, typically take several hours to complete a forecast. This complicates computing statically

meaningful ensembles of high-resolution models (needed for uncertainty estimation) in near real-time.

Contrary to this, an artificial neural network (ANN) can be an accurate and fast non-parametric model

with computational complexity (Skiena, 1998) of only O(N2) for a two layer feedforward neural network

with N neurons in the hidden layer.

This paper focuses on design, implementation, and testing of an ANN model for storm surge prediction

in North Carolina. The inputs to the model are hurricane parameters such as its location, central pressure,

and radius to maximum winds. The outputs are the storm surge predictions for specified locations along

∗Corresponding author
Email addresses: bezuglova@benedict.edu (Anton Bezuglov), bblanton@renci.org (Brian Blanton),

santiagor@benedict.edu (Reinaldo Santiago)

Preprint submitted to Neural Networks September 26, 2016
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Recent Studies and Motivation

... or predict only at specific locations along the coast ...

Coastal Engineering 170 (2021) 104024

Available online 2 October 2021
0378-3839/© 2021 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Coastal Engineering

journal homepage: www.elsevier.com/locate/coastaleng

Rapid prediction of peak storm surge from tropical cyclone track time series
using machine learning
Jun-Whan Lee a,∗, Jennifer L. Irish a,b, Michelle T. Bensi c, Douglas C. Marcy d

a Department of Civil and Environmental Engineering, Virginia Tech, 750 Drillfield Dr, Blacksburg, VA, 24061, USA
b Center for Coastal Studies, Virginia Tech, 926 W Campus Dr, Blacksburg, VA 24061, USA
c Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
d NOAA Office for Coastal Management, 2234 S. Hobson Avenue, Charleston, SC 29405, USA

A R T I C L E I N F O

Keywords:
Storm surge
Convolutional neural network
Principal component analysis
K-means clustering
Surrogate modeling
Chesapeake Bay
Hurricane Isabel
Hurricane Irene
Hurricane Sandy

A B S T R A C T

Rapid and accurate prediction of peak storm surges across an extensive coastal region is necessary to inform
assessments used to design the systems that protect coastal communities’ life and property. Significant advances
in high-fidelity, physics-based numerical models have been made in recent years, but use of these models for
probabilistic forecasting and probabilistic hazard assessment is computationally intensive. Several surrogate
modeling approaches based on existing databases of high-fidelity synthetic storm surge simulations have been
recently suggested to reduce computational burden without substantial loss of accuracy. In these previous
studies, however, the surrogate modeling approaches relied on a tropical cyclone condition at one moment
(usually at or near landfall), which is not always most correlated with the peak storm surge. In this study, a
new one-dimensional convolutional neural network model combined with principal component analysis and
a k-means clustering (C1PKNet) is presented that can rapidly predict peak storm surge across an extensive
coastal region from time-series of tropical cyclone conditions, namely the storm track. The C1PKNet model
was trained and cross-validated for the Chesapeake Bay area of the United States using existing database
of 1031 high-fidelity storm surge simulations, including both landfalling and bypassing storms. Moreover,
the performance of the C1PKNet model was evaluated based on observations from three historical hurricanes
(Hurricane Isabel in 2003, Hurricane Irene in 2011, and Hurricane Sandy in 2012). The results indicate that the
C1PKNet model is computationally efficient and can predict peak storm surges from realistic tropical cyclone
track time-series. We believe that this new surrogate model can enhance coastal resilience by providing rapid
storm surge predictions.

1. Introduction

Storm surge generated by tropical cyclones (TC) is one of the
most devastating threats to coastal communities. In the United States
(US) alone, storm surge events have caused hundreds of billions of
dollars in economic damage and have been responsible for about half
of the fatalities from Atlantic TCs (1963–2012) (Rappaport, 2014).
Historically, the US’s costliest natural disaster was Hurricane Katrina
(2005), where the storm surge exceeded 7.5 m above sea level, causing
at least $170 billion of property damage (Robertson et al., 2007;
Blake et al., 2011; Smith, 2020). Furthermore, the single deadliest
natural disaster in the US was the unnamed Galveston hurricane (1900)
that caused at least 8000 deaths, most of which were storm-surge
related (Blake et al., 2011). To mitigate the damages that can be caused
by storm surge, several studies have emphasized the need for a rapid
and accurate storm surge model that can support not only probabilistic

∗ Corresponding author.
E-mail address: jwlee89@vt.edu (J.-W. Lee).

storm surge forecasting, where surge predictions for a large number
of storms are required in order to characterize uncertainty associated
with uncertainty in the storm track (Glahn et al., 2009), but also robust
probabilistic storm surge hazard assessment, where surge predictions
for a large number of storms are also required to both accurately
characterize mean hazard statistics and to account for uncertainty in
the hazard estimation (Resio et al., 2007).

Physics-based numerical models, such as SLOSH (Sea, Lake, and
Overland Surges from Hurricanes, Jelesnianski, 1992) and ADCIRC
(ADvanced CIRCulation, Luettich et al., 1992), are widely used to
predict storm surges. Over the last several decades, significant advances
in physics-based model frameworks allow highly accurate simulation
of storm surge by both accounting for dominant processes – e.g., wind
surge, wave setup, nonlinear advection – and by employing high grid

https://doi.org/10.1016/j.coastaleng.2021.104024
Received 30 June 2021; Received in revised form 25 August 2021; Accepted 25 September 2021
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Recent Studies and Motivation

... or predict without using all of the geospatial connectivity

Coastal Engineering 186 (2023) 104406

Available online 4 October 2023
0378-3839/© 2023 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Coastal Engineering

journal homepage: www.elsevier.com/locate/coastaleng

A framework for flexible peak storm surge prediction
Benjamin Pachev a,∗, Prateek Arora b, Carlos del-Castillo-Negrete a, Eirik Valseth a,c,d,
Clint Dawson a

a Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, 78712, TX, USA
b Department of Civil and Urban Engineering, New York University, Brooklyn, 11201, NY, USA
c The Department of Data Science, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, Ås, 1430, Norway
d Simula Research Laboratory, Kristian Augusts gate 23, Oslo, 0164, Norway

A R T I C L E I N F O

Keywords:
Storm surge
ADCIRC
Machine learning

A B S T R A C T

Storm surge is a major natural hazard in coastal regions, responsible both for significant property damage and
loss of life. Accurate, efficient models of storm surge are needed both to assess long-term risk and to guide
emergency management decisions. While high-fidelity regional- and global-ocean circulation models such as
the ADvanced CIRCulation (ADCIRC) model can accurately predict storm surge, they are very computationally
expensive. Consequently, there have been a number of efforts in recent years to develop data-driven surrogate
models for storm surge.

Here we develop a novel surrogate model for peak storm surge prediction based on a multi-stage approach.
In the first stage, points are classified as inundated or not. In the second, the level of inundation is predicted
for each point. Additionally, we propose a new formulation of the surrogate problem in which storm surge is
predicted independently for each point. This new formulation has the potential to allow for predictions to be
made directly for locations not present in the training data, and significantly reduces the number of required
model parameters.

We demonstrate our modeling framework on two study areas: the Texas coast and the northern portion
of the Alaskan coast. For Texas, the model is trained with a database of 446 synthetic hurricanes. The model
is able to accurately match ADCIRC predictions on a test set of synthetic storms. We further present a test of
the model on Hurricanes Ike (2008) and Harvey (2017). For both storms, we find that the model predictions
have comparable accuracy to ADCIRC hindcasts when compared to actual observational data. For Alaska, the
model is trained on a dataset of 109 historical surge events. We test the surrogate model on actual surge events
including the recent Typhoon Merbok (2022) that take place after the events in the training data. As with the
Texas dataset, the surrogate model achieves decent performance against observational data. In both cases, the
surrogate models are many orders of magnitude faster than ADCIRC.

1. Introduction

In the last four decades, tropical cyclones have caused over one tril-
lion dollars of damage in the United States alone (National Centers for
Environmental Information (NCEI), 2022). Storm surge is directly re-
sponsible for much of the property damage from tropical cyclones (Neu-
mann et al., 2015) and nearly half of the fatalities (Rappaport, 2014).
Hurricane Katrina (2005) was the costliest hurricane on US record,
with hundreds of billions of dollars in property damage and over 1200
deaths, most of which were caused by the extreme storm surge (Blake
et al., 2011). Thus, predicting storm surges is crucial in order to assess
the long term risk to coastal infrastructure and property from tropical

∗ Corresponding author.
E-mail addresses: benjaminpachev@utexas.edu (B. Pachev), pa2178@nyu.edu (P. Arora), carlos.delcastillo@utexas.edu (C. del-Castillo-Negrete),

eirik.valseth@nmbu.no, eirik@oden.utexas.edu (E. Valseth), clint@oden.utexas.edu (C. Dawson).

cyclones. While high-fidelity physics-based models of storm surge such
as the ADvanced CIRCulation (ADCIRC) model (Luettich et al., 1992;
Pringle et al., 2021) have been developed, they require significant
computational resources. This makes statistical risk studies infeasible
or limited in scope. One workaround is to use a fast, low-fidelity
physical model such as SLOSH (Sea, Lake, and Overland Surges from
Hurricanes, (Jelesnianski, 1992)). However, low-fidelity models neglect
key physics and consequently can have high errors.

An alternative to physics-based modeling is surrogate modeling, in
which a parametric model is fit to data generated from observations
or outputs of a high-fidelity physical model. An early example of this
approach to modeling storm surge is the storm surge response function

https://doi.org/10.1016/j.coastaleng.2023.104406
Received 31 March 2023; Received in revised form 30 August 2023; Accepted 1 October 2023
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Structure and Content

Deep learning specialization has 5 courses ...
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Structure and Content

... and each course has 3-5 modules ...
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Structure and Content

... and each module has videos, a quiz, and 1-2 programming assignments
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Structure and Content

I earned certificates!

5 Courses

Neural Networks and Deep
Learning

Improving Deep Neural
Networks: Hyperparameter
Tuning, Regularization and
Optimization

Structuring Machine
Learning Projects

Convolutional Neural
Networks

Sequence Models

Andrew Ng,  
Founder,
DeepLearning.AI 
 
Kian Katanforoosh 
Co-founder, Workera 
 
Younes Bensouda
Mourri 
Instructor of AI,
Stanford University

Aug 23, 2023

Joel Dietrich
has successfully completed the online, non-credit Specialization

Deep Learning
Congratulations! You have completed all 5 courses of the Deep
Learning Specialization. In this Specialization, you built neural network
architectures such as Convolutional Neural Networks, Recurrent
Neural Networks, LSTMs, Transformers, and learned how to make
them better with strategies such as Dropout, BatchNorm, and
Xavier/He initialization. You mastered these theoretical concepts,
learned their industry applications using Python and TensorFlow, and
tackled real-world cases such as speech recognition, music synthesis,
chatbots, machine translation, natural language processing, and more.
You are now familiar with the capabilities and challenges of deep
learning. You are ready to take the definitive step in the world of AI
and participate in the development of leading-edge technology.

The online specialization named in this certificate may draw on material from courses taught on-campus, but the included
courses are not equivalent to on-campus courses. Participation in this online specialization does not constitute enrollment
at this university. This certificate does not confer a University grade, course credit or degree, and it does not verify the
identity of the learner.

Verify this certificate at: 
https://coursera.org/verify/specializat
ion/3Y5SRQUTSBR2

Feb  16 ,  2023

Joel Dietrich

Neural Networks and Deep Learning

an online non-credit course authorized by DeepLearning.AI and offered through Coursera

has successfully completed

Andrew Ng, Founder, DeepLearning.AI & Co-founder, Coursera 
Kian Katanforoosh, Co-founder, Workera 
Younes Bensouda Mourri, Instructor of AI, Stanford University

Verify at :  
ht tps://coursera.org/veri fy/BVD 9X8J7W5FQ 

  Cour ser a  ha s conf ir med the  identity of  this individua l a nd the ir
pa r t icipa tion in the  cour se .

M a r  12 ,  2023

Joel Dietrich

Improving Deep Neural Networks: Hyperparameter
Tuning, Regularization and Optimization

an online non-credit course authorized by DeepLearning.AI and offered through Coursera

has successfully completed

Andrew Ng, Founder, DeepLearning.AI & Co-founder, Coursera 
Kian Katanforoosh, Co-founder, Workera 
Younes Bensouda Mourri, Instructor of AI, Stanford University

Verify at :  
ht tps://coursera.org/veri fy/3D ZMHNRQJRE6 

  Cour ser a  ha s conf ir med the  identity of  this individua l a nd the ir
pa r t icipa tion in the  cour se .

M a r  24,  2023

Joel Dietrich

Structuring Machine Learning Projects

an online non-credit course authorized by DeepLearning.AI and offered through Coursera

has successfully completed

Andrew Ng, Founder, DeepLearning.AI & Co-founder, Coursera 
Kian Katanforoosh, Co-founder, Workera 
Younes Bensouda Mourri, Instructor of AI, Stanford University

Verify at :  
ht tps://coursera.org/veri fy/V3HSXHXZRL8A 

  Cour ser a  ha s conf ir med the  identity of  this individua l a nd the ir
pa r t icipa tion in the  cour se .

J ul  28 ,  2023

Joel Dietrich

Convolutional Neural Networks

an online non-credit course authorized by DeepLearning.AI and offered through Coursera

has successfully completed

Andrew Ng, Founder, DeepLearning.AI & Co-founder, Coursera 
Kian Katanforoosh, Co-founder, Workera 
Younes Bensouda Mourri, Instructor of AI, Stanford University

Verify at :  
ht tps://coursera.org/veri fy/VE5MA97GMVYT 

  Cour ser a  ha s conf ir med the  identity of  this individua l a nd the ir
pa r t icipa tion in the  cour se .

A ug 23 ,  2023

Joel Dietrich

Sequence Models

an online non-credit course authorized by DeepLearning.AI and offered through Coursera

has successfully completed

Andrew Ng, Founder, DeepLearning.AI 
Kian Katanforoosh, Co-founder, Workera 
Younes Bensouda Mourri, Instructor of AI, Stanford University

Verify at :  
ht tps://coursera.org/veri fy/XJ4RCXFMGPNE 

  Cour ser a  ha s conf ir med the  identity of  this individua l a nd the ir
pa r t icipa tion in the  cour se .
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Structure and Content

Fun assignments included a cat identifier ...
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Structure and Content

... creating art in the style of Impressionists ...
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Structure and Content

... writing poetry in the style of Shakespeare ...
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Structure and Content

... and generating music in the style of Jazz


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



17.31911
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Convolutional Neural Networks

Neural networks are composed of one or more layers ...

Ng (2021)
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Convolutional Neural Networks

... with each layer having matrix operations with learn-able parameters ...

Ng (2021)
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Convolutional Neural Networks

... so any complexity just adds more parameters to learn

We are only learning weights
for matrix operations!

Ng (2021)
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Convolutional Neural Networks

We can add convolutions to recognize spatial patterns in images ...

Ng (2021)
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Convolutional Neural Networks

... and thus reduce an image to a small number of outputs

Ratan (2023)

https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture/
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Hurricane Irene (2011)

Start with a coarse model for the NC estuaries/sounds ...
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Hurricane Irene (2011)

... and use a simple vortex model to represent the storm ...

Parametric vortex model from Holland (1980) and modified by Gao (2018):

V (r) =

√
V 2
max (1 + 1/Ro) e

ψ(1−(Rmax/r)
B) (Rmax/r)

B + (rf /2)2 − (rf /2)

in which:

– Vmax and Rmax are the maximum wind speed and the radius to it

– Ro is the Rossby number (ratio of nonlinear and Coriolis accelerations)

– f is the Coriolis parameter (function of latitude)

– ψ and B are scaling factors

Holland (1980); Gao (2018)

https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
https://cdr.lib.unc.edu/downloads/hq37vn75j
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Hurricane Irene (2011)

... and compute its effects on winds and water levels ...


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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Hurricane Irene (2011)

... so can we also use the storm parameters to predict with a deep neural network?
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Deep Neural Network

For the inputs, we can use available information about the storm ...
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Deep Neural Network

... to develop the inputs (storm parameters) ...

x train.shape = (576, 8, 1)

x val.shape = (144, 8, 1)

x test.shape = (144, 8, 1)

y train.shape = (576, 256, 256, 1)

y val.shape = (144, 256, 256, 1)

y test.shape = (144, 256, 256, 1)

-76.608 25.415 -2.780 5.669 90.0 63.25 30.0 2

longitude latitude storm u storm v Vmax ∆Pmax RMW category

Determine parameters for each time snap

Store in text array
(8× 1)
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Deep Neural Network

... and randomize the time snaps

x train.shape = (576, 8, 1)

x val.shape = (144, 8, 1)

x test.shape = (144, 8, 1)

y train.shape = (576, 256, 256, 1)

y val.shape = (144, 256, 256, 1)

y test.shape = (144, 256, 256, 1)
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Deep Neural Network

For the outputs, we want to predict maps of water levels during the storm ...


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}
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Deep Neural Network

... so we convert each map to a grayscale image ...

x train.shape = (576, 8, 1)

x val.shape = (144, 8, 1)

x test.shape = (144, 8, 1)

y train.shape = (576, 256, 256, 1)

y val.shape = (144, 256, 256, 1)

y test.shape = (144, 256, 256, 1)Convert to grayscale image
(water levels = 0–200;

dry pixels = 255)

Store in text array
(256× 256× 1)
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Deep Neural Network

... and then combine the inputs (storm parameters) and outputs (water-level maps)

x train.shape = (576, 8, 1)

x val.shape = (144, 8, 1)

x test.shape = (144, 8, 1)

y train.shape = (576, 256, 256, 1)

y val.shape = (144, 256, 256, 1)

y test.shape = (144, 256, 256, 1)
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Deep Neural Network

Use a network with fully connected and reverse convolution layers ...

8

32

128

512

2048

8192

32× 32× 8

64× 64× 32

128× 128× 128

256× 256× 32 256× 256× 8 256× 256× 1

Trainable parameters: 18,326,865
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Deep Neural Network

... and train it
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Deep Neural Network

Predicted flood maps are good overall ...

Neural Network Deterministic
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Deep Neural Network

... but have errors near the wet/dry front

Neural Network

–

Deterministic

=

Differences

Mean error = 0.09 m
Median error = −0.04 m
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Prediction of High-Resolution Maps
of Storm-Driven Coastal Flooding using Deep Learning

TA Cuevas López1, BJ Tucker1, JC Dietrich1, DL Anderson2

1Dep’t of Civil, Construction, and Environmental Engineering, NC State Univ
2Coastal and Hydraulics Lab, U.S. Army Engineer Research and Development Center
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Library of Storm Simulations

We have spent most of our time in developing a training library

Data Collection

– Dataset of synthetic
tropical cyclones

– Select impactful tracks

Flood Map Library

– Deterministic simulations

– Downscaling to grayscale
raster images

Deep Learning

– Sequential and
convolutional layers

– Train / test / validate

Final Validation

– Compare neural network
to deterministic hindcasts

Step 1 Step 2 Step 3 Step 4
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Library of Storm Simulations

Start with a database of 100,000 synthetic storms ...

Bloemendaal (2020)

https://doi.org/10.1038/s41597-020-0381-2


51

Library of Storm Simulations

... for each storm, define an area of influence ...

Holland (1980)

https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
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Library of Storm Simulations

... identify the 1813 storms that influence North Carolina ...
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Library of Storm Simulations

... and rank the storms by dissimilarity

Camus (2011)

https://doi.org/10.1016/j.coastaleng.2011.02.003
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Library of Storm Simulations

These storm simulations were a LOT of work

HPC systems:

– NCSU Hazel

– Purdue Anvil

– TACC Stampede 2

Simulation stats:

– Total of 1813 storms

– 1.3M CPU-hours

– Mean wall-clock time of 3.7 hr

– 1.7T of data
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Library of Storm Simulations

Simulations show the potential for large storm surges ...
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Library of Storm Simulations

... but the largest storm surges are unlikely
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Preliminary Results

Tomás has designed a neural network with sequential and convolutional layers ...
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Preliminary Results

... and it is encouraging for predictions at single locations
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Conclusions and Future Work

Machine learning models for coastal hazards predictions

1. Sabbaticals are fun!

2. Coursera can be a good introduction to a new topic

– Still not an expert in machine learning (and never will be?)
– But much more familiar with concepts and model development

3. Promising preliminary results with deep neural networks

– Proof-of-concept shows we can predict grayscale raster maps
– Now adding complexity in storms, resolution, network design
– Ongoing work to improve performance

4. Must be extremely careful with training data

– Synthetic storm simulations were a LOT of work
– Compounds the challenges of deterministic models



61

Conclusions and Future Work
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