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Motivation: Real-time forecasting uncertainty
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Motivation: Mesh resolution plays a key role
Trade-off: ↑ Resolution =⇒ ↑ Accuracy and ↑ Run time
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Trade-off:
↑ Resolution =⇒ ↑ Accuracy and ↑ Run time
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Motivation: Accelerate Predictions with Deep Learning

What is new?

– Astronomical tides

– Prediction of maps
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Motivation: Proposed Workflow
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Motivation: Proposed Workflow
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Motivation Proposed Workflow
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Step 1: Dataset of synthetic tropical cyclones
Filter storms by duration and proximity to NC

9Bloemendaal et al. (2020)



Step 1: Maximum Dissimilarity Algorithm
Selection of a representative set of storms – 1000 most dissimilar

10Camus et al. (2011)



Step 1: Maximum Dissimilarity Algorithm
Selection of a representative set of storms – 10 most dissimilar
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Motivation Proposed Workflow
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Step 2: Hydrodynamic Modeling
Setup of ADCIRC simulations

– Same mesh (NC9a) and nodal
attributes

– Almost same configuration
Random date =⇒ random tide

– Wind field: Symmetric Holland Model
No need to compute extra parameters

– Coords, WS, P, and RMW

aBlanton and Luettich (2008)
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – Log files

HPC systems

– NCSU Hazel

– Purdue Anvil

Automated log files reading

– Run to completion or fail

– Type or error

– Runtime

– CPU hours

≈ 1M CPU hours and 2 months
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – 2D Maps

”Boring storm”
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Step 2: Hydrodynamic Modeling
Postprocessing ADCIRC simulations – 2D Maps

Strong storm
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”An A.I.-Generated Picture Won an Art Prize. Artists Aren’t
Happy”, The New York Times.
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Kalpana
Software to visualize and downscale ADCIRC
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Kalpana
Kalpana allows easy visualization in GIS – netCDF to shapefile
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Kalpana
Static Downscaling Method

Use of a high-resolution topo DEM to increase ADCIRC resolution and to expand or shrink
the inundation extent1

Rucker et al. (2021)

Expand inundation Shrink inundation
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Kalpana
Python code that calls GRASS GIS

Updated version:

– From Python 2.7 to 3.9 (or higher)

– Pandas, GeoPandas, rioxarray and Dask

– Some parallelization

– From 1 single script to 2 modules

– All functions available on GitHub and documented.

Mayor improvements:

– Preprocess to accelerate the downscaling

– From 45 to 7 minutes on a 15m res DEM of NC

– Less user-defined inputs

– Inputs related to mesh

21



Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Example of Neuse River, NC
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Step 2: Downscaling Max Water Elevation
Downscaled DEM to greyscale image
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Motivation Proposed Workflow
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Step 3: Neural Network Development
Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point
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Step 3: Neural Network Development
Long-Short Term Memory (LSTM) + Multi-Layer Perceptron (MLP) to predict peak surge at a single point
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Step 3: Neural Network Development
Network Architecture

Preprocess the tracks

– 6 inputs: lon, lat, wind speed, pressure, forward speed, and rad to max winds

– Zero padding and masking

Long short-term memory units (LSTM):

– Bi-directional: from t0 to tn and from tn to t0

– 6 layers and 256 hidden units

Multi-layer perceptron (MLP):

– First layer: 2 (bi-dir) × 256 (hidden units) + 16 (tides) = 528 neurons

– 7 dense layers: 512 to 256 to 128 to 64 to 32 to 8 to 1 neuron

– Batch normalization after each dense layer

– Dropout of 50%

– RMSE loss
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Step 3: Neural Network Predictions
RMSE for training and validation is close to 20 cm

Prediction at Duck Pier (NC) tide gauge
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Summary
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Summary, Current and Future Work

NN to predict high-res maps of storm-driven coastal flooding

– Selected a subset of tracks that represents the max and avg of the tropical cyclone
conditions in NC

– Simulated 1000 storms with ADCIRC using ≈ 1M cpu hours

– Downscaled the peak surge output to produce high and constant-resolution maps

– Implemented a NN based on an LSTM and MLP layers to predict peak surge at single
points

Current Work

– New set of storms to simulate already defined

– Running simulations with a 1.4M nodes mesh developed by Johnathan Woodruff

Future Work

– Neural network development

– 2D CNN to generate maps

– Validation with real storms
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Thank you!

github.com/ccht-ncsu/Kalpana
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