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Storm Surge Modeling
ADvanced CIRCulation (ADCIRC) solves modified forms of the shallow water equations ...

We use ADCIRC to represent the long waves of tides and storm surge
— Solves the generalized wave continuity equation (GWCE) for water levels (¢):
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— Solves the depth-averaged momentum equations for currents (U, V):
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Storm Surge Modeling
. and ADCIRC uses high-resolution in space and time

In geographic space:
— Piecewise-linear, continuous, Galerkin finite elements
— Unique values for (¢, U, V) at every mesh vertex

— Typical minimum mesh spacings of 10 to 50 m

In time:
— Semi-implicit
— Implicit solution of GWCE using Jacobi Conjugate Gradient (JCG) solver
— Explicit solution of momentum equations with lumped mass matrix
— Fully explicit
— Also possible to use lumped mass matrix for solution of GWCE

— Typical time steps of 0.5 to 10 sec
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Storm Surge Modeling

Coastal NC has a wide range ‘of spatial scales... ™
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Storm Surge Modeling

which we can explore by zooming to the Neuse River Estuary ..
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Storm Surge Modeling
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Subgrid Corrections
We want to have our cake ...

Pond

50-100 m

Marsh Grass



Subgrid Corrections
.. and eat it, too

Digital Elevation Model

C-CAP Landcover Map
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Subgrid Corrections
Long history of subgrid corrections for shallow water flows ...

Subgrid corrections use information at smaller scales to ‘correct’ flow variables (water levels,
current velocities) at the model scale

Selected applications to shallow water flows:
— Defina (2000) corrected advection and partially wet cells
— Able to coarsen by factor of 32
— Casulli (2009) and Casulli and Stelling (2011) also corrected partially wet cells
— Used lookup tables created from high-resolution elevation data
— Volp (2013) corrected bottom stress
— Improved discharge and water surface slope relative to high-resolution counterparts

Able to coarsen the model resolution and still represent small-scale flow pathways and barriers

— Higher accuracy at same resolution, higher efficiency at coarser resolution



Subgrid Corrections
. and we used subgrid corrections to improve connectivity for ADCIRC

Traditional Subgrid Level 0
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Averaged Equations
Govering equations are averaged to the model scale ...

A given flow variable @ can be averaged, e.g. Kennedy et al. (2019):

G—/ Q dA
Aw

— To only the wet part of the grid/mesh scale:

W:/ Q dA
Aw

Aw = 9Ag

— To the grid/mesh scale:

— Where the areas are related by:



Averaged Equations
. and we can simplify the time derivatives ...

We can use rules from Whitacker (1985) to interchange differentiation

— We assume away the boundary integrals

For example, to average a time derivative:

<8UH // OUH dA
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because we assume H = 0 on the wet/dry boundary Iy



Averaged Equations
.. and we can simplify the spatial derivatives ...

The averaging starts similarly for a spatial derivative:
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but then we also introduce a closure term:
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Averaged Equations
... to derive the averaged governing equations for ADCIRC

We apply these averaging rules to every term in the governing equations

— Example of momentum conservation in x-direction:
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in which the red coefficients are new closure terms

— Similarly for momentum conservation in y-direction, mass conservation



Closure Terms

We can assign closures with levels of complexity ...

We used ‘Level 0" and ‘Level 1’ closures:

Conventional Level 0 Level 1
Wet/dry o) Oorl Aw/Ag Aw/Ag
Advection Cuu, Cvu, Cuv, Cwv 1 1 <H1>W (H?/C¢)w R?
Friction Cum.r Cr=gn?/H3  (CHw (H)w R2
Surface gradient Ce 1 1 1

Note the differences for the wet/dry status, advection, and friction terms

— Level 0 only changes the wet/dry status to allow partially wet cells/elements

— Level 1 adds corrections for advection and friction



Closure Terms

. and these closures allow for partially wet elements/areas

Level-0 closures required a major revision to ADCIRC'’s wet/dry algorithm

— Removed extensive logic to compare water levels, velocities between vertices

\,\:*

? h?‘:::“

Now the status is determined solely by the total water depth:

<H>G > <H>Gm'.n =01m



Look-up Tables
Closures and averaged values can be pre-computed and stored in look-up tables ...

Following variables depend on subgrid information:
— Elements: (H)s, Cuu, Cvu, Cuv, Cwv, ¢
- Vertices: (H)g, (H)w, Cmf, ¢

We can pre-compute these variables:
— Pick a range of possible water levels, e.g. (()w = —5to 5 m

— For each possible (¢)y/, compute other variables based on high-resolution elevation and
landcover raster datasets

— Store variables in look-up tables for use during the simulation

We reduced file sizes by using a range of possible wet-area fractions, ¢ = 0 to 1



Look-up Tables
... by using an open-source subgrid calculator

ch or jump to. Pullrequests Issues Codespaces Marketplace Explore

& ccht-ncsu / subgrid ADCIRCUtility  pubic X Editins + | @uUnwateh 2 v ¥ Fok 1« fr Sar 1 -

<> Code ( Issues Il Pullrequests (® Actions [0 Projects [0 Wiki @ Security | Insights @ Settings

¥ main + P 2branches © 0tags Go to file Add file ~ <> Code ~ About B

This set of scripts will create subgrid

@} ilwoodr Cleaned up code and added min and max surf elevs - 723895 last week © 66 commits input files for subgrid enabled ADCIRC.
_pycache_ Changed back to previous version 2monthsago | Readme

A Activity
[ .0S_Store Changed back to previous version 2 months ago

r 1star
[) README.md Update README.md 9monthsago | & 2 watching
[) subgrid_calculator copy_check.py ~ Changed back to previous version 2monthsago | ¥ 1fork

Report it
(3  subgrid_calculator.py Changed back to previous version 2 months ago eport repository
[ subgrid_calculator.pyc add some steps to see what is slowing down the reduction. 5 months ago

Releases
(3 subgrid_calculator_old_codes.py Created fresh .py file 10 months ago

No releases published
[3 subgrid_preprocessor.py Cleaned up code and added min and max surf elevs 18StWEEK | Cronte 2 mom elemte
O testerpy Added reduced vertex table 4 months ago

Packages
README.md 4

No packages published
Publish your frst package

subgridADCIRCUtility

Languages

This set of scripts will create subgrid input files for subgrid enabled ADCIRC.
———
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Level 0 (Wet Fraction)
Partially wet elements are important ...

Consider a winding channel:
— Channel width 250 m and depth 1 m below surrounding topography
— Meshes: coarse (1000 m) and fine (minimum 10 m)
— Tides from south boundary with amplitude 1 m

12 km

12 km

(w) uoneas|q



Level 0 (Wet Fraction)
... because they allow tides to propagate further into the channel

Coarse Subgrid Coarse Traditional Fine Traditional
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Level 1 (Advection and Bottom Friction)
Higher-level closures are sometimes important ...

Consider another winding channel:
— Channel width 5 m and depth 1 m below surrounding
— Meshes: coarse (24 m) and fine (minimum 5 m)

— Constant flow by specifying water depths

800 m

120 m
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Level 1 (Advection and Bottom Friction)
... depending on the overall flow depth ...
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Level 1 (Advection and Bottom Friction)

Velocity Magnitude Difference (%)
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— Advection and bottom friction

— Only bottom friction

Velocity magnitude differences due to:
— Only advection

. and the local flow velocities
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Matthew (2016) in South Atlantic Bight

Widespread flooding along South Atlantic Bight (SAB)
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Matthew (2016) in South Atlantic Bight
Elevation and landcover described by 830 datasets and 197 GB
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Matthew (2016) in South Atlantic Bight
‘Forecast-grade’ mesh with 770K vertices and minimum resolution of 500 m
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Matthew (2016) in South Atlantic Bight
Flooding extents are similar to SACS mesh that is 15 times larger
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Matthew (2016) in South Atlantic Bight
Improved connectivity to far-inland regions like New Bern NC
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Matthew (2016) in South Atlantic Bight

Flooding at more locations, and better match to observed peaks
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Matthew (2016) in South Atlantic Bight
Subgrid ADCIRC has overhead, but offers significant speed-ups

Wall-Clock Time (CPU-hr)

SACS Conventional 5860
SABv2 Conventional 386
SABvV2 Subgrid 433

Wall-Clock Time Ratio

SABV2 Subgrid / SABv2 Conventional ~ 1.12
SACS Conventional / SABv2 Subgrid ~ 13.55
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Conclusions

Subgrid ADCIRC

The main contributions of this research are:

1. Subgrid corrections were added to ADCIRC
— Hurricane-strength forcing on ocean domains

2. Increases in accuracy and hydraulic connectivity on coarsened meshes
— Flooding to more locations in South Atlantic Bight, better match to

observations during Matthew (2016)

3. Efficiency gains on coarsened meshes

— Speed-ups by factors of 13+

Future efforts should focus on:
— Optimizing code to reduce overhead
— New applications

3
g
TaTioe

RRROERD
et
TaTAvATav . aATAYaw, o

H
L
!

i



Conclusions
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Abstract

The inland propagation of storm surge caused by tropical cyclones depends on large and
small waterways to connect the open ocean to inland bays, estuaries, and floodplains.
Numerical models for storm surge require these waterways and their surrounding topogra-
phy to be resolved sufficiently, which can require millions of computational cells for flood-
ing simulations on a large (ocean scale) computational domain, leading to higher demands
for computational resources and longer wall-clock times for simulations. Alternatively, the
governing shallow water equations can be modified to introduce subgrid corrections that
allow coarser and cheaper simulations with comparable accuracy. In this study, subgrid
corrections are extended for the first time to simulations at the ocean scale. Higher-level
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