Storm Surge Predictions al Hyperlocal Sites

Jenero Knowles, JC Dietrich & Jack Voight North Carolina State University USNCCM17

Storm Track for Hurricane Irene (2011) from CERA covering regional domains

Modeled Water Levels in Norfolk

Local Community in Norfolk

ADCIRC + SWAN

3

ADCIRC Model showing resolution details and bathymetry

• Uses finite element unstructured grids

- Resolves Tides and Storm Surges
- Solves Generalized Wave Continuity Equation (GWCD)

Successfully used for forecasts by NOAA, DHS and

TTOLOT

NAVAL STATION NORFOLK (NSN)

- Located on Land Subsidence (Settling Land)
- Surrounded by bulkheads and many water bodies
- Highest Rate of SLR on east Coast: 4.5mm/year¹

Location Map of NSN in Norfolk, VA

Storm Surge impacts in the city of Norfolk from Hurricane Irene (2011)

Naval Station Norfolk

1 - Sweet et. al. (2022)

2 - Availa (2011)

3 - Hovel et. al. (2004)

4 – NOAA Sea Level Rise Viewer (https://coast.noaa.gov/slr/#/layer)

2.2m peak storm surge from Hurricane Irene $(2011)^2$

2.7m peak storm surge from Hurricane Isabel $(2003)^3$

RESEARCH QUESTION & OBJECTIVES

What is the worst-case scenario for a storm at NSN?

🔗 Mesh

Mesh Development

• Develop high resolution mesh(es) for NSN.

🔶 Storm

Storm Simulations

• Examine sensitivity to mesh resolution.

Model

Model "Inter-Comparison"

Examine sensitivity to storm scenarios with other models.
Sea Level Rise
Storm Track

MESH DEVELOPMENT – WHAT DEMS TO USE?

500 m 20 8 Straight Range For garanty Mission (SRTM)

OCEANMESH2D

- Creates the Delaunay Triangulation
- Refines the Triangulation Iteratively

Element quality =
$$q_E = 4\sqrt{3}A_E\left(\sum_{i=1}^{3}(\gamma_E^2)_i\right)^{-1}$$

Example of Delaunay Triangulation

9

Where: A_E = area of the element $(\lambda_E)i$ = length of the ith edge of the element

GeoProcessing	Mesh Building	Mesh Generation	Mesh Data
Sets ocean and land	Ensures the mesh will be	Distributes mesh	Builds input files for a simulation.
boundaries using DEMs	stable by bounding Courant	resolution in 2D space	
and coastline shapefiles.	number to under 0.5.	within the domains.	

MESHES CREATED

Coarse (500m)

Medium (100m)

Fine (20m)

- Off-the-shelf-Model
- <u>1.8M Elements</u>
- 50km max in open ocean
- 10m Floodplains on coast

- Produced in OceanMesh2D
- <u>775k Elements</u>
- 30km max in open ocean
- 10m Floodplains in VA only

- Produced in OceanMesh2D
- <u>856k Elements</u>
- 10km max in open ocean
- 10m Floodplains in VA only

STORM SIMULATION

Tides

- Major 8 Tidal Constituents
 - K1, O1, Q1, P1, M2, N2, K2, and S2
- 18-day spin up (8/6/2011 to 8/24/2011)

Storm

- Hurricane Irene (2011)
- GAHM (NWS=20) with NHC best-track
- 6-day winds (8/24/2011 to 8/30/2011)
 - Landfall Date = 8/27/2011

Storm Track for <u>Hurricane Irene (2011)</u> from National Hurricane Center

PRELIMARY RESULTS - WATER LEVEL

MAX FLOODING FROM PRELIMARY RESULTS

Reported flooding from Norfolk Open Data compared against Medium Mesh Max Flooding Non-Flooded Point from Model (4/13)

Flooded Point from Model (9/13)

Norfolk Open Data:

- Surveyed Residents Reports
- Report Type:
 - \circ <u>Flooded Streets (13 Reported) \leftarrow </u>
 - Traffic Signal Issues
 - Down Power Lines
 - o Date and Event
- Address and location of reported

STORM SIMULATION - SUMMARY OF RESULTS

Mesh	Water Levels (<u>Peak = 1.89m</u>)			Computational Cost
	RMSE (m)	Peak (m)	Reported Floodings Models (%)	Hours (hr.)
Coarse (500m)	0.19	2.04	0	3612
Medium (100m)	0.27	1.99	69	398
Fine (20m)	0.22	1.94	85	838

SEA LEVEL RISE SCENARIO

15

STORM TRACK DEVIATION SCENARIO

Irene (8/25/2011 - 8/28/2011)

Storm Track Deviations of <u>Hurricane Irene</u>

Deviation (°)	Deviation (km)	Deviation (n mi.)
± 0.9	± 99.9	± 53.5
± 2.3	± 255.3	± 137.9

Storm Track Deviations

STORM TRACK DEVIATION SCENARIO

STORM TRACK DEVIATION SCENARIO

MAIN CONCLUSIONS

- Mesh and Model optimization is achieved by focusing the elements on the mesh to the hyperlocal site.
 - Improves the max peak water level from <u>2.04m to 1.94m</u>.
 - Shows <u>85% more reported flooding</u> results.
- Further storm perturbations will be needed to determine the worse case for NSN.
 - Sea level rise has a linear relationship to the peak flood.
 - Parallel deviations do not give worse scenario from Hurricane Irene.

Thank Email: jsknowle@ncsu.edu Website: ccht.ccee.ncsu.edu

20