Impact of storm events on density stratification in the Pamlico and Albemarle Estuarine System

M.S. Thesis Defense

10/28/2021

Brooke A Rumbaugh

Acknowledgements

Thesis Committee Dr. Casey Dietrich¹ Dr. Katherine Anarde¹ Dr. Cheryl Ann Blain² Dr. Elizabeth Sciaudone¹

¹ Civil, Construction and Environmental Engineering, North Carolina State University

² Naval Research Laboratory

About Me

- From Charleston, WV
- Marshall University, WV
 - B.S. in 2019
 - Civil Engineering
- North Carolina State University
 - Spring 2020
- Loves to travel, try new food, and adventures with my family and pets

Outline

- Introduction
- Methods
- Results
 - Story of the Storm
 - Specific Areas
- Conclusions & Future Work

Introduction

Tropical Cyclones

- Intense winds, large amounts of rainfall, and flooding
- 1980 2020:
 - More damage than any other weather disaster in U.S.
 - More than 6,500 deaths
- Storm surge
 - Rise of ocean waters above the regular tide levels

Estuary Impacts

- Nutrient loading/regeneration
- Harmful algal blooms
- Fish mortalities
- Abrupt changes in salinity
- Increases in mixed-layer depth
- Decreases in sea-surface temperature
- Loss of vertical stratification

Coastal Modeling

- Numerical models to represent coastal environment
 - Response to tides, rivers, winds, etc.
 - Usually simplified
- Estuaries
 - Storm-driven circulation
 - Density-driven circulation

Storm & Density-Driven Circulation

Storm-driven Circulation

• Maskell et al. (2014) used idealized estuary

Density-driven Circulation

 Rayson et al. (2015) examined density-driven circulation in Galveston Bay

ADCIRC

- ADvanced CIRCulation
 - (Luettich and Westerink 2004)
- 2D and 3D
 - 2D widely used for storm surge
- Generalized Wave Continuity Equation:
 - Water surface elevations
- Velocities:
 - 2D: vertically-integrated momentum equations
 - 3D: 3D shallow water momentum equations
- Sigma Coordinate System

ADCIRC in Estuaries

- Storm-Driven
 - Yin et al. (2017) investigated the effect of sea level rise and typhoon intensification on storm surge Pearl River Estuary, China
 - Sebastian et al. (2014) investigated maximum water levels and behavior of storm surge in Galveston Bay, Texas
- Density-Driven:
 - Dresback et al. (2010) applied a coupled model to the Northern Gulf of Mexico
 - Cyriac et al. (2020) investigated the tidal, wind, and density-driven circulation at Choctawhatchee Bay, Florida

Combined Circulation

- Liu et al. (2019) investigated impacts on **the circulation and the memory of the system** in response to Irma (2017) at Florida Bay and Charlotte Harbor Estuary
- D'Sa et al. (2019) studied the response of dissolved and particulate organic carbon in the Apalachicola Bay, Florida
- Brown et al. (2014) examined the transport of the **dissolved organic carbon** in the Neuse River, North Carolina, during Irene (2011)
- Most of these studies:
 - Coupled to larger models
 - Examined density stratification as additional goal
 - Missing physics

Remaining Questions

- Uncertainty about how the estuary evolves during a storm event.
 - How does the mixing vary through the estuary?
 - How do freshwater discharges due to rainfall affect the mixing?
- Another uncertainty is the restratification
 - How quickly does the system restratify?
 - Do the freshwater discharges interrupt the restratification?

Hypothesis

It is hypothesized that, for a large and shallow estuarine system with minimal connections to the open ocean, the storm forcing will cause large brackish and freshwater intrusions and recoveries that vary through the system.

- Develop a three-dimensional in the Albemarle-Pamlico Estuarine System (APES), NC
 - Include storm and density-driven circulation
 - Irene (2011)

Objectives

- 1. Develop mesh and initial conditions
 - Tailor to APES
 - August inputs
- 2. Simulations with and without Irene (2011)
 - Spin up periods
 - One includes winds & increased discharges
- 3. Quantify the storm effects on density distributions
 - Two methods

Methods

Area of Study

Study Area Major Forcings

- Fresh water from rivers
 - Roanoke River largest flow rate
- Saline water from inlets
 - ~1 m tidal range
- Average distribution
 - Albemarle fresher
 - Currituck ~ 3 ppt average
 - Pamlico brackish
 - ~ 20 ppt average
 - Weak vertical stratification

River	Drainage Area	Mean Flow	Maximum Flow	Date
	km ²	m ³ /s	m ³ /s	
Chowan	12,000	21.89	320	11 October 2016
Roanoke	25,000	226.68	7,300	18 August 1940
Tar-Pamlico	16,500	70.35	1,000	22 August 1940
Neuse	16,100	117.30	1,600	20 September 1999

ADCIRC in APES

- Luettich et al. (2002) used the barotropic, depth-integrated, twodimensional version of ADCIRC to investigate a semi-diurnal signal found within the Neuse River
- Dresback et al. (2013) developed a total water forecast system based on ADCIRC
- Haase et al. (2012) used ADCIRC to predict oyster larvae dispersion in APES
- Conclusions:
 - Primary forcing is wind
 - More understanding of density circulation

Storm Selection

- Irene (2011)
- August 15 August 30
- Landfall:
 - Cape Lookout, NC
 - August 27 1200 UTC
 - Wind speed: 38 m/s
 - Category-1
- Progressed over APES

Storm Selection Continued

- NCDEQ Fish deaths
- 12 Reports
 - 10 in study area
 - Several in Chowan and Roanoke Rivers
- Last report September 13
 - More than 17 days after storm

	A STATE
Northampton Herts	Catter Pasquetank
CX-	pyraum de sta
350	- Conserved
Martin	Washington Tyrrell Dare
N.E.	1 tons
Pit Q	Beautort Hyde
Craven	1 3EN
Rig	Charles and
Lones M	Charles (
S L	artern and the
Anslow L Wolker	- Aller
- Alexander	
0	50 Miles
	ish Mortality
	15 - 250
	251 - 1000
	>1000

Simulation Development

Simulation Development

Mesh Development

- NC v9.98 (NC9)
 - 624,782 vertices
- Trimming (NC9-APES)
 - 0 elevation
 - 60330 vertices; 5 km res (ocean) & 50 m res (inlets & rivers)

Bathymetry Smoothing

- Steep bathymetry can cause instabilities
- Smoothed based on Cyriac et al. (2020)
- Combined smoothed & original

Range (m)	Source for Bathymetry in Combined Mesh
h > 15	Original
5 < h <= 15	Linear Weighted Combination
0 < h <= 5	Smoothed
-3.5 < h <= 0	Linear Weighted Combination
d < -3.5	Original

Simulation Development

Tides

- Applied using tidal constituents
 - 8 Constituents used
- Requires time specific and location specific
 - Location: amplitudes and phases from EC2015 tidal database
 - Time: node factors and equilibrium arguments calculated for time period
- ADCIRC
 - Develops tidal signals
 - Develops tidal potentials

Simulation Development

Rivers

- Two types:
 - Steady
 - Unsteady
- Based off USGS stream gauges
- Flow rates to flux rates
 - Length of boundary
- No-Storm simulation
 - Steady flow rates

River	USGS Gauge	Flow Rate (m ³ /s)
Chowan	02050000	49.3
Roanoke	02080500	66.5
Tar-Pamlico	020840000	79.0
Neuse	02091814	112.7

Rivers Continued

- Storm Simulation
 - Unsteady flow rates
 - Includes larger discharges after storm

Simulation Development

Atmospheric

- Generalized Asymmetric Holland Model (GAHM)
 - Develops pressure and wind fields
 - Includes asymmetric wind fields
- Needs storm parameters
 - NOAA Best Track file
 - Pressures, different isotachs for winds, path location, and times of observation
- Irene:
 - Begins 0000 UTC August 21
 - Ends 0000 UTC August 29

Simulation Development

Density - SalWise

- Database for salinity, temperature, and others
- Developed by Dr. Niels Lindquist (UNC) and Dr. Stephen Fegley (UNC)
 - "Development of a Comprehensive North Carolina Salinity Database to Facilitate Management and Restoration of Critical Fish Habitats"
- Has over 1,980,000 records
- Date ranges from 1945 to 2014
- Parameters come from various NCDMF programs

Density - Forcing

- August 2011
 - Surface: 25,580 points
 - Bottom: 237 points
- Extracted all data for August
 - At least 1 data point from: 1945,1948-1967, 1972-2013
 - Surface: 158,665 points
 - Bottom: 3,789 points

Density – Forcing Continued

- Use binning method
- First, divide up area into equally sized bins
 - Bin size: 0.05 degrees
 - Blue lines bin boundaries
 - Blue dot bin centers

Density – Forcing Continued

- Sort observational points for each bin
- Calculate metrics for each bin
 - Number of points
 - Max, Min, Median, Mean for salinity and temperature

	Long	Lat	NumPts	Sal_max	Sal_min	Sal_media	Sal_mean	Temp_ma	Temp_mir	Temp_me	Temp_me	an
0	-77.95	34.05	9	29.6	13.1	20.2	21.63333	32.7	27.9	30.8	30.7	
1	-77.85	34.05	5	34	28.3	28.7	29.7	29.7	25.3	25.9	26.68	

Density – Forcing Continued

- Develop surface for salinity and temperature
 - GRASS GIS
 - v.surf.rst
- Interpolated onto mesh
 - v.what.rast
- Resulted in 'average' August distribution
- Used as input

Surface

Bottom

Simulation Details

- Two simulations
 - With storm forcing atmospheric forcing and changing river discharges
 - Without storm forcing no atmospheric forcing and constant river discharges

Analysis Methods

- Biologically-based salinity zones
 - Developed for the Mid-Atlantic region, based off over 300 species
- Focus on mesohaline, polyhaline, euhaline zones
 - Optimal living conditions for blue crabs (polyhaline/euhaline) and oysters (mesohaline/polyhaline/euhaline)
 - Highest commercial revenue for 2019

Results

Story of the Storm

Results – Story of the Storm

Story of the Storm 8/21 8/22 8/23 8/24 8/25 8/26 8/27 8/28 8/29 0400 UTC 36.75 34.00 m/s m 5 36.5° 4 36.25 3 36° 2 35.75° 35.5° 0 35.25° -1 35° -2 34.75° -3 48 34.5° –77.5° –77.25° -77° -76.75° -76.5° -76.25° –76° –75.75° –75.5° –75.25°

Results – Story of the Storm

- Average August Distribution
- Divide into 4 sub-regions
 - Albemarle Sound
 - Pamlico Sound, Hatteras & Ocracoke Inlets
 - Roanoke Island & Oregon Inlet
 - Tar-Pamlico & Neuse Rivers

Albemarle Sound

Albemarle Sound

- Eastern experienced up to 24 ppt range of salinities
- Western experienced differences less than 1.89 ppt

Pamlico Sound, Hatteras & Ocracoke Inlets

• Experienced differences less than 7 ppt in center of sound

Roanoke Island & Oregon Inlet

Roanoke Island & Oregon Inlet

Roanoke Island & Oregon Inlet

- Northern end: ranges of 20.8 ppt
- Southern end: ranges of 19.56 ppt
- Western side: ranges of 22.34 ppt
- Eastern side: ranges of 8.76 ppt

Tar-Pamlico & Neuse Rivers

Tar-Pamlico & Neuse Rivers

Tar-Pamlico & Neuse Rivers

- From Greenville, NC: fresher zone extended about 76 km
- From New Bern, NC: fresher zone extended about 36 km

Conclusions & Future Work
Simulation

- 3D ADCIRC model of APES
 - Tides
 - Rivers
 - Atmospheric
 - Density

Main Take-Aways

- In the eastern Albemarle Sound, surface salinities can increase by as much as three zones.
- Most of Pamlico Sound stayed within the polyhaline zone throughout Irene
- Waters near Roanoke Island saw the largest changes in salinity
- The Neuse and Tar-Pamlico Rivers experienced saline intrusions during the storm and fresh extrusions after the storm.
- If the fresh water intrusions stay for extended period of time, detrimental to ecosystem

Future Work

- Investigate the return to pre-storm conditions
- Effects on distribution of different types of storms
 - Shore perpendicular
 - Heavy rainfall
- Focus more on temperature changes
 - Inclusion of heat flux

Thank You

• Questions?

Sources of Images

- 1. <u>https://www.weather.gov/mhx/Aug272011EventReview</u>
- 2. <u>https://oceanservice.noaa.gov/facts/stormsurge-stormtide.html</u>
- 3. <u>https://coastalreview.org/2018/09/research-hurricanes-effects-on-estuaries/</u>
- 4. <u>https://nypost.com/2018/09/26/waste-from-hurricane-florence-starts-to-flow-into-atlantic-ocean/</u>
- 5. <u>https://wrri.ncsu.edu/blog/2019/08/algal-blooms-information-session-aug-24-in-edenton/</u>
- 6. <u>https://earthobservatory.nasa.gov/images/51931/hurricane-irene</u>
- 7. <u>https://nauticalcharts.noaa.gov/learn/hydrodynamic-model-</u> <u>development.html</u>