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Numerical extensions to incorporate subgrid corrections in an established 
storm surge model
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aEnvironmental Fluid Dynamics, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre 
Dame, Indiana, USA; bDepartment of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA

ABSTRACT
Inundation models represent coastal regions with a grid of computational points, often with 
varying resolution of flow pathways and barriers. Models based on coarse grid solutions of 
shallow water equations have been improved recently via the use of subgrid corrections, which 
account for information (ground surface elevations, roughness characteristics) at smaller scales. 
In this work, numerical approaches of an established storm surge model are extended to 
include subgrid corrections. In an attempt to maintain continuity with existing users and 
results, model extensions were limited to those needed to provide basic subgrid capabilities, 
and included two major additions. First, a finite volume method is used to incorporate 
corrections to the mass and momentum equations using high-resolution ground surface 
elevations. Second, the no-slip condition imposed on the B-grid wet/dry interface in the 
model is modified to a slip condition to enable flows in channels with widths comparable to 
cell size. Numerical results demonstrate these numerical extensions can significantly enhance 
the accuracy of the model’s predictions of coastal flooding, with low additional computational 
cost.
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1. Introduction

Storm surge is a rise in water above the normal astro
nomical tide and can cause extensive flooding in areas 
with a relatively flat coastal topography (Hope et al.  
2013), leading to loss of life and property damage. In 
one of the largest storm surges in history, Hurricane 
Katrina in 2005 caused catastrophic damage of nearly 
$125 billion to Louisiana and Mississippi, USA, with 
1,833 confirmed fatalities (Corelogic, 2020). While less 
severe in their effects, many recent storms have caused 
flooding and damages along the U.S. Atlantic and Gulf 
coasts (Park 2021). Accurate and efficient predictions 
of storm surge are essential to save lives and protect 
properties in coastal regions.

Storm surge and coastal flooding can be modeled 
via numerical solutions of the two-dimensional (2-D), 
depth-averaged, Shallow Water Equations (SWE). In 
these models, ground surface elevations and other 
information are represented at the grid/mesh level, 
by approximating their values at the center, edges, or 
vertices of a computational cell.

To improve accuracy, the grid resolution can be 
increased, but with a corresponding increase in com
putational time. One alternative approach to improve 
models of shallow water hydrodynamic problems is to 
use subgrid models (Bates 2000; Casulli 2009; Defina  
2000). These models use information at smaller scales 

in the model formulation to correct the behavior of 
flow variables (water levels, current velocities) at the 
grid scale. They have gained attention because of their 
abilities to improve accuracy and efficiency on a coar
sened grid.

The early subgrid models for SWE-based modeling 
were introduced by Roig (1989), Defina, D’Alpaos, and 
Matticchio (1994), Defina (2000), and King (2001), 
where an artificial porosity (introduced as a function 
of water surface elevation) was proposed to account 
for partially wet areas. Casulli (2009) proposed a semi- 
implicit, finite volume-finite difference approach on a 
staggered grid with a novel wetting/drying algorithm 
by utilizing the porosity function to guarantee the 
positivity of the water height and to account for par
tially wet cells. This method can be applied on rela
tively coarse grids while it incorporates high-resolution 
bathymetric data at the subgrid level. Casulli and 
Stelling (2011) and Sehili, Lang, and Lippert (2014) 
applied this method to study flows in Venice Lagoon 
and the Elbe River, respectively, and showed that the 
subgrid model enhances performance with minimal 
additional computational cost. Stelling (2012) pre
sented an approach for flood simulations that com
bined the subgrid wetting/drying approach of Casulli 
(2009) with the correction of bottom friction based on 
the concept of roughness depth within a fully finite- 
volume framework and a quadtree grid approach for 
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local grid refinement. Similarly, based on Casulli’s sub
grid formulation, Volp, Van Prooijen, and Stelling 
(2013) developed a finite-volume, subgrid formula 
with an assumption of constant friction slope flows at 
the subgrid level, leading to revised formulations of 
bottom friction and advection terms in the momentum 
equation. More recently, by using the volume aver
aging technique, Kennedy et al. (2019) proposed an 
upscaled form of the 2D SWEs for storm surges. The 
upscaled system of equations is structurally similar to 
the standard SWEs, but has additional terms/coeffi
cients related to integral properties of the fine-scale 
topography and flow.

Although some subgrid approaches, e.g. Defina 
(2000) and Kennedy et al. (2019), were derived gener
ally, many of these studies, e.g. Casulli (2009) and Volp, 
Van Prooijen, and Stelling (2013), were devised within 
a framework of numerical methods chosen to be sui
table for subgrid corrections. However, in practice, 
technical challenges and ambiguities may arise in the 
implementation of subgrid corrections in established 
models, which often use numerical methods that are 
less amenable to define averaging areas and related 
aspects required for the subgrid corrections. Despite 
these challenges, adapting subgrid approaches into 
widely used models has appeal, because models’ soft
ware infrastructures can be readily leveraged. 
Woodruff et al. (2021) implemented the upscaled 
SWEs with the mass and friction corrections in the 
finite-element-based, shallow water, ADvanced 
CIRCulation (ADCIRC) model. The challenging part of 
that implementation was to represent the averaged 
flow variables for an unstructured, triangular mesh 
within a continuous-Galerkin, finite-element frame
work, due to its vertex-based arrangement of flow 
variables. This challenge was addressed via the use of 
representative areas for both elements and vertices. 
Through a number of test cases, including realistic 
inundation induced by Hurricane Rita in 2005, they 
showed that the subgrid corrections can improve the 
numerical performance of coarse grid models, i.e. 
yielding predictions of coastal water levels that were 
similar in accuracy to, but 10 to 50 times faster than, 
fine-grid models.

For real-time forecasting, the Sea, Lake, and 
Overland Surges from Hurricanes (SLOSH) model has 
been developed and applied by the U.S. National 
Weather Service (NWS) to estimate storm surge 
heights resulting from hurricanes (Jelesnianski 1992). 
SLOSH uses a unique variant of 2D SWEs and discre
tizes them using an explicit, finite-difference formula 
on a staggered B-grid with, in some model conditions, 
C-grid cells in small portions of a model domain for a 
subgrid treatment of small features such as subgrid 
channels (hand coding is required in specifying such 
the cells in the model input files) (For the B-grid, the 
surface elevation is located at the cell center and both 

transport components are placed at the corner of the 
cells; for the C-grid, the surface elevation is placed at 
the cell center and the transport components are 
located at the midpoint of the cell edges (Arakawa 
and Lamb 1977)). The equations are solved on a 
polar, elliptic, or hyperbolic grid, telescopic outward 
with a finer resolution near the center (coastline), to 
estimate storm surge accurately (Jelesnianski 1992). 
SLOSH storm surge predictions depend strongly on 
accurate meteorological input such as hurricane size, 
intensity, forward speed, trajectory, and atmospheric 
pressure (Forbes et al. 2014). SLOSH-based models are 
computationally efficient and are used for ensembles 
of predictions in real-time and for climatological surge 
studies (Forbes et al. 2014; Glahn et al. 2009; Zachry et 
al. 2015).

In this study, we adapt the numerical implementa
tion of SLOSH. The goal is not to completely rewrite 
this established model, which would certainly be much 
different if created today, but instead to maintain con
tinuity with existing SLOSH results in the open ocean 
while extending formulations to improve inundation 
performance, particularly in regions with narrow chan
nels. Accomplishing this goal requires two significant 
modifications/extensions. First, the existing no-slip 
boundary conditions for transport – imposed when at 
least one of the four cells surrounding a transport node 
is dry – are changed to slip conditions, which allow 
transport in narrow channels. This extension provides a 
platform to implement the model without predeter
mining the flow paths. Second, subgrid corrections are 
incorporated to improve the accuracy of the model. A 
finite-volume formula is introduced to account for 
high-resolution bathymetry variations on a subgrid 
level. It provides a platform to automatically take 
high-resolution bathymetric data and produce polar, 
elliptical, or curvilinear grids without hand coding. 
Section 2 describes the model formulation with the 
inclusion of subgrid corrections, while section 3 
assesses the performance of the developed model by 
using test cases ranging from an idealized set-up to 
realistic applications of storm surge induced by 
Hurricanes Florence in 2018. Finally, section 4 sum
marizes the present work and discusses a framework 
for future research and development.

2. Methodology

2.1. Governing equations

The shallow water equations (SWEs) describe flows in 
various coastal and environmental engineering pro
blems, such as estuarine circulation, tides, and storm 
surges. The SWEs can be solved in a variety of ways, 
such as 1D or 2D, conservative or non-conservative 
forms of momentum equations (Canestrelli and Toro  
2012; Dresback, Kolar, and Casey Dietrich 2005).
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2.1.1. Equations of motion on a Cartesian 
framework
The SLOSH storm surge model uses the following form 
of SWEs in the Cartesian frame of reference 
(Jelesnianski 1992). The continuity is described as: 

@h
@t
þ
@U
@x
þ
@V
@y
¼ 0 (1) 

where U and V are components of transport in x and 
y direction, respectively, and h is the free surface 
elevation.

Platzman (1963) derived the equations of motion 
for storm surge computations in the Cartesian frame
work. Then, these equations were modified with a 
bottom slip coefficient, to give the form of transport 
equations (Jelesnianski 1992) for storm surge 
modeling: 

@U
@t
¼ � gHðBr

@ðh � h0Þ

@x
� Bi

@ðh � h0Þ

@y
Þ

þ fðArVþ AiUÞ þ Crxτ � Ciyτ;

(2) 

@V
@t
¼ � gHðBr

@ðh � h0Þ

@y
� Bi

@ðh � h0Þ

@x
Þ

(3) 

where h0 is the hydrostatic water height due to 
surface pressure, f is Coriolis parameter, yτ and xτ are 
components of surface stress, Ai,Ar ,Bi,Br , Ci, Cr are bot
tom stress terms, and H ¼ hþ D denotes the total 
depth with D being the depth of the quiescent water 
relative to the reference datum. Note that the coeffi
cients Ai, Ar , Bi, Br , Ci, and Cr belong to terms derived 
from “formally” solving the shallow water equation 
with the vertical mixing term. See p. 741–743 of 
Jelesnianski (1967) and Appendix A of Jelesnianski 
(1992) for the full detailed account on the derivation 
of the bottom friction terms (For a self-contained pur
pose, we also briefly summarize such the derivation in 
Appendix A). These coefficients are defined through 
the water depth, vertical mixing eddy viscosity coeffi
cient, “slip” bottom coefficient, and the Coriolis para
meter. They are different from those used in studies 
based on the traditional shallow water equations, 
where bottom stress is assumed to obey a quadratic 
friction law.

A constant drag coefficient in air and a constant 
eddy stress coefficient in the water are used due to 
the difficulty of forecasting winds surrounding a hurri
cane. (For more details, see Jelesnianski (1992).)

2.1.2. The equations of motion on a polar frame of 
reference
A polar or elliptical/hyperbolic telescopic grid type is 
selected for efficiency purposes in the SLOSH model 
(For more detail, see Conver et al. (2008)). This type of 
grid is telescopic outward of the center, allowing a finer 

resolution near the coastline, where the topography 
variation is essential and monotonically increased 
toward the open ocean, implying a lower resolution 
offshore. For computational benefits, the equations of 
motion are transformed from Cartesian to non-Cartesian 
coordinates. Although the transformed equations 
emerge more complicated than the non-transformed 
equations, the transformed equations have useful prop
erties in terms of the numerical method for the simple 
and efficient computations when a polar or elliptical/ 
hyperbolic telescopic grid are used.

For simplicity of the presentation, we consider the 
governing equations in the polar frame of reference 
with the following transformation (Jelesnianski 1992): 

P ¼ lnðr=R0Þ; Q ¼ θ (4) 

is considered (see Jelesnianski (1992) for governing 
equations in a general conformal transformation). In 
the above formula, R0 is a scale that controls the 
stretching of the grid, and r and θ are the distance 
from the origin and angle between the line from origin 
to the point, respectively. This transformation maps a 
uniform grid in the P-Q coordinate system to a tele
scopic polar grid in the physical domain.

Using the transformation in Equation (4), one can 
write the transformation of the Equations (1), (2), and 
(3) in the P-Q coordinates as (for more detail, see 
Jelesnianski (1992)): 

@H
@t
þ

1
r2

@U
@P
þ
@V
@Q

� �

¼ 0; (5) 

@U
@t
¼ � gH Br

@h
@P
� Bi

@h
@Q

� �

þ

f ArV þ AiUð Þ þ r cos θð ÞXT þ sin θð ÞYTð Þ;

(6) 

@V
@t
¼ � gH Br

@h
@Q
� Bi

@h
@P

� �

�

f ArU � AiVð Þ þ r cos θð ÞYT � sin θð ÞXTð Þ;

(7) 

where 

XT ¼ � gHðBr
@h0

@P
� Bi

@h0

@Q
Þ þ Crxτ � Ciyτ; (8) 

YT ¼ � gHðBr
@h0

@Q
� Bi

@h0

@P
Þ þ Cryτ þ Cixτ; (9) 

where U ¼ r cosðθÞUþ r sinðθÞV and V ¼ � r sin 
ðθÞUþ r cosðθÞV. The transformed form of Equations 
(5), (6), (7) are structurally similar to the equations in 
Cartesian coordinates (1), (2), (3) except for new coeffi
cients and source terms.

These equations have three unknown solution vari
ables UðP;Q; tÞ, VðP;Q; tÞ, and hðP;Q; tÞ. Note that the 
continuity Equation (5) is written with the time rate of 
change of the total water depth @H=@t, instead of 
@H=@t as originally considered in Jelesnianski (1992). 
Although these terms are equivalent on the 
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continuous level (because the bathymetric depth D is 
time-independent), the form in Equation (5) permits an 
inclusion of subgrid partial filling of water in a compu
tational cell. (This aspect will be apparent in sec
tion 2.2.)

To solve the SWEs numerically on the uniform grid, 
different types of staggered grids can be considered 
(Arakawa and Lamb 1977). Two widely used grid 
arrangements are a staggered B-grid and a staggered 
C-grid (Figure 1). In the C-grid, the U and V compo
nents of the transports are placed at the midpoints of 
cell edges normal to the component directions, and 
the water surface elevation is defined at the cell center. 
For the B-grid, the water surface elevation is also 
defined at the cell center, but both P and Q compo
nents of the transports are defined at the cell corners. 
In the SLOSH model, Equations (5)–(7) are discretized 
mainly on a staggered B-grid. In some setups, the 
model utilizes a staggered C-grid locally to capture 
the effects of narrow channels. Staggered C-grid cells 
in such setups are predetermined in the grid. In the 
subsequent sections, finite-volume schemes of 
Equations (5)–(7) accounting for subgrid bathymetry 
on the B-grid are presented. In section 2.2.5, an imple
mentation of slip boundary conditions on the B-grid is 
introduced to avoid predetermining C-grid cells.

2.2. Model description

Here, we aim to accommodate the subgrid corrections in 
the equations of motion (5)–(7) by using a finite volume 
method on a staggered B-grid, in which the unknown 
water surface elevation h is placed at the cell center and 
the unknown transport components U and 
V are placed in the corner of cells 
(hk

m;n ¼ hðmΔP; nΔQ; kΔtÞ, Uk
m;n ¼ Uððm � 1

2ÞΔP; ðn � 1
2Þ

ΔQ; kΔtÞ, Vk
m;n ¼ Vððm � 1

2ÞΔP; ðn � 1
2ÞΔQ; kΔt)). The 

continuity Equation (5) and transport Equations (6), and 
(7) will be integrated over their associated control 
volumes depicted in Figure 2.

2.2.1. Subgrid resolution
For a given bathymetric depth function DðP;QÞ, the 
auxiliary porosity function is expressed by: 

ϕ P;Q; zð Þ ¼
0 D P;Qð Þ þ z � 0
1 D P;Qð Þ þ z > 0

�

; (10) 

where z 2 ð� 1;1Þ for a given elevation z. This func
tion can be used to precisely express the flow domain 
within the FV cell from DðP;QÞ and the surface elevation 
(Casulli 2009). The wet area of Ωh

m;n corresponds to the 
horizontal integral of this auxiliary function at free 
surface z ¼ hm;n 

ϕm;nðhm;nÞ ¼

ð

Ωh
m;n

ϕðP;Q; hm;nÞdPdQ: (11) 

The total water depth at a point ðP;QÞwithin the cell 
Ωm;n is the vertical integral of this function from � 1
to the free surface elevation, i.e. 

HðP;Q; hm;nÞ ¼

ðhm;n

� 1

ϕðP;Q; zÞdz

¼ maxð0;DðP;QÞ þ hm;nÞ: (12) 

Note that the value of HðP;Q; hm:nÞ is greater or equal 
to zero. The wet area within the cell is described by 
Ωh;w

m;n ¼ fðP;QÞ j HðP;Q; hm;nÞ> 0g and jΩh;w
m;nj ¼ ϕm;n 

ðhm;nÞ. The water volume of the ðm; nÞ cell can be deter
mined by: 

Vm;nðhm;nÞ ¼

ð

Ωh
m;n

HðP;Q; hm;nÞdPdQ

¼

ðz¼hm;n

z¼� 1
ϕm;nðzÞdz: (13) 

It can be verified that Vm;n � 0 and 0 � ϕm;n � jΩm;nj.
In addition, we also account for the wet area and 

wet volume within the transport control volume in a 
finite volume discretization of the momentum 

Figure 1. Arrangement of solution variables in a single cell for 
the staggered B-grid (left) and C-grid (right). Light blue 
squares are the location of surface elevation h. Green circles 
show the location of transport components (U and V) on the 
staggered B-grid. Red and gray diamonds show the locations 
of U and V transport components, respectively, on the stag
gered C-grid.

Figure 2. Schematic of the finite volume method on a stag
gered B-grid. Red squares and black circles show the locations 
of cell centers and cell corners for discretization of the surface 
elevation and transport components, respectively. Ωh and ΩU 

are the control volume associated with the water surface 
elevation and transport components, respectively.
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equations (to be described in section 2.2.3). These 
quantities are defined similarly to that described 
above. More specifically, in the transport control 
volume ðΩU

m;nÞ, the wet area and the water volume 
are determined by 

bϕm;nð
bhm;nÞ ¼

ð

ΩU
m;n

ϕ P;Q;bhm;n

� �
dPdQ; (14) 

in which the hat superscript is used to emphasize 
that these quantities are associated with the transport 
control volume, and 

bVm;n ĥm;n

� �
¼

ð

ΩU
m;n

H P;Q; ĥm;n

� �
dz ¼

ðz¼ĥm;n

z¼� 1
ϕ̂m;n zð Þdz

(15) 

where bhm;n is the surface elevation at the ðm; nÞ cell 
corner, which is the average surface elevation of the 
surrounding wet cells.

In the above formulation, the local bed elevation 
DðP;QÞ is assumed to be known at all locations. In 
practice, bathymetric data are usually available in the 
form of DEMs, which must be finer than the computa
tional grid resolution to implement this subgrid 
resolution.

2.2.2. Continuity discretization
We consider a fully explicit, finite-volume (FV) formula 
of the continuity equation for a cell ðm; nÞ that is 
obtained from integrating Equation (5) over the cell 
domain Ωh

m;n and using an explicit Euler forward 
scheme for temporal discretization, more precisely, 

ð

Ωm;n

Hkþ1 � Hk

Δt
dPdQþ

1
r2

m;n

ððnþ3=2ÞΔQ

ðnþ1=2ÞΔQ
UkdQ

 

�

ððnþ1=2ÞΔQ

ðn� 1=2ÞΔQ
UkdQþ

ððmþ3=2ÞΔP

ðmþ1=2ÞΔP
VkdP �

ððmþ1=2ÞΔP

ðm� 1=2ÞΔP
VkdP

!

¼ 0;

(16) 

where Hk ¼ HðP;Q; hk
m;nÞ, Uk and Vk are the total 

water depth and transport components at time 
tk ¼ kΔt, and rm;n is the value of r at the cell center. 
Applying (13) to the first two integrals and the trape
zoidal rule to the edge integral terms yield: 

Vm;nðhkþ1
m;n Þ � Vm;nðhk

m;nÞ

Δt
þ

1
r2

m;n

ðUk
mþ1;nþ1 þ Uk

mþ1;nÞ

2
ΔQ�

 

ðUk
m;nþ1 þ Uk

m;nÞ

2
ΔQþ

ðVk
mþ1;nþ1 þ Vk

m;nþ1Þ

2
ΔP �

ðVk
mþ1;n þ Vk

m;nÞ

2
ΔP

!

¼ 0;

(17) 

where �Vm;n hk
m;m

� �
is the water volume in the cell 

ðm; nÞ determined from subgrid bathymetry and the 
surface elevation hk

m;n. Dividing the above formula by 
ΔPΔQ=Δt and assuming that ΔP ¼ ΔQ ¼ ΔS (this is 
done for the sake of comparison below) results in the 
following scheme 

�Vm;n hkþ1
m;n

� �
¼ �Vm;n hk

m;n

� �
�

Δt
2r2

m;n ΔS
Uk

mþ1;nþ1 � Uk
m;nþ1þ

�

Uk
mþ1;n � Uk

m;n þ Vk
mþ1;nþ1 þ Vk

m;nþ1 � Vk
mþ1;n � Vk

m;n

� (18) 

where V is the volume of a cell normalized by a cell 
area. Note that the finite difference discretization of 
the continuity equations in Jelesnianski (1992) is: 

hkþ1
m;n ¼ hk

m;n �
Δt

2 r2
m;n ΔS

Uk
mþ1;nþ1 � Uk

m;nþ1þ
�

Uk
mþ1;n � Uk

m;n þ Vk
mþ1;nþ1 þ Vk

m;nþ1 � Vk
mþ1;n � Vk

m;n

� (19) 

By comparing Equation (18) with Equation (19), it 
can be seen that the only difference is that the finite- 
volume formula considers Vm;nðhkþ1

m;n Þ instead of hkþ1
m;n . 

Assuming high-resolution bathymetric data are avail
able, this term (Vm;nðhkþ1

m;n Þ) represents the correct 
amount of water volume, based on the constant sur
face elevation, in the partially wet cells (compared to 
ðhm;n þ Dm;nÞΔPΔQ in the nonsubgrid formula).

2.2.3. Momentum discretization
Below we describe the discretization of the momen
tum equation in the P direction (The discretization of 
the V component is done in a similar manner). A finite- 
volume formula is obtained by integration of Equation 
(6) over the transport control volume cell ΩU

m;n. To 

evaluate the resulted integral statement, the friction 
coefficients Br , Bf , Ar , and Af are assumed constant over 
the control volume; the wind stresses exert on the wet 
portion of the control volume, and the gradients of the 
surface elevation are replaced by the following finite 
difference approximation: 

@h
@x
�

hk
m;n � hk

m� 1;n þ hk
m;n� 1 � hk

m� 1;n� 1

2ΔP
; (20) 

@h
@y
�

hk
m;n þ hk

m� 1;n � hk
m;n� 1 � hk

m� 1;n� 1

2ΔQ
: (21) 

With an explicit Euler forward scheme in time, this 
leads to the following scheme 

Ukþ1
m;n ¼ 1þ ΔtfAið ÞUk

m;n � Fpre
� �

m;n þ ΔtfArVk
m;n

þ rΔt cosðθÞðXTÞ
k
m;n þ sinðθÞðYTÞ

k
m;n

� �
bϕmþ1;n;

(22) 

where 

Fpre
� �

m;n ¼ � gΔtbVm;nðbhk
m;nÞ Br

hk
m;n � hk

m� 1;n þ hk
m;n� 1 � hk

m� 1;n� 1

2ΔP

 

� Bi
hk

m;n þ hk
m� 1;n � hk

m;n� 1 � hk
m� 1;n� 1

2ΔQ

!

;

and 

bVm;nðhk
m;nÞ ¼

bVm;nðhk
m;nÞ

ΔPΔQ
; bϕm;n ¼

bϕm;nðh
k
m;nÞ

ΔPΔQ
:
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The fully explicit, finite-difference discretization for 
the U transport component on the B-grid presented in 
Jelesnianski (1992) is: 

Ukþ1
m;n ¼ ð1þ ΔtfAiÞUk

m;n � ðFpreÞm;n þ ΔtfArVk
m;n

þ rðcosðθÞðXTÞ
k
m;n þ sinðθÞðYTÞ

k
m;nÞ;

(23) 

where 

ðFpreÞm;n ¼ � gΔtH
k
m;n Br

hk
m;n � hk

m� 1;n þ hk
m;n� 1 � hk

m� 1;n� 1

2ΔP

 

� Bi
hk

m;n þ hk
m� 1;n � hk

m;n� 1 � hk
m� 1;n� 1

2ΔQ

!

with the total water depth 

H
k
m;n ¼

1
4 ½ðDm;n þ hk

m;nÞ þ ðDmþ1;n þ hk
mþ1;nÞþ

ðDm;nþ1 þ hk
m;nþ1Þ þ ðDmþ1;nþ1 þ hk

mþ1;nþ1Þ�:

Comparing the finite-volume (22) and finite-difference 
(23) discretization schemes, it can be seen that there are 
two main differences. First, the pressure term in the finite- 
volume formula considers the wet volume bVm;nðhk

m;nÞ

instead of H
k
m;n. Second, the wet fraction appears in the 

finite-volume formulation for external forces to consider 
partially wet area.

Note that, due to the use of the finite volume for
mulas for the discretization of both continuity and 
momentum equations, the term “FV/FV formula” is 
used to refer to the subgrid model.

2.2.4. Numerical solution
The approximate solution of hkþ1 can be obtained by 
solving Equation (18) in a cell-by-cell fashion. The proce
dure amounts to finding the value of hkþ1 so that 
Vðhkþ1Þ ¼ b, where b is the right-hand side of Equation 
(18) computed from the known surface elevation and 
transport components at the previous time step. In gen
eral, VðhÞ varies non-linearly with h in the partially wet 
cells, and a root-finding method (such as the Newton- 
Raphson method) could be used to find the solution h. 
Here, to solve efficiently for hkþ1, we use a look-up table 
of the volume of the cells as a function of water surface 
elevation to find the water volume from a given h and 
vice versa. In this approach, before the time marching 
step, the volume of a cell is pre-calculated for possible 
water surface elevations and stored in a computer mem
ory for fast retrieval. During the time marching step of the 
mass equation, the pre-computed relationships are used 
to interpolate the value of the water surface elevation for 
a given volume (and vice versa when the volume is 
required for a given surface elevation). This procedure is 
computationally efficient because it relies on interpola
tion from a look-up table; in addition, it is independent of 
the resolution of the subgrid bathymetric DEM during the 
time marching step. The error associated with the use the 
lookup table corresponds to the error in the linear inter
polation (see Figure 3 for illustration).

More specifically, in a forward look-up table, for a 
given hg, 

VðhgÞ ¼ VIðhgÞ þ
1
2

d2VðhÞ
dh2 ðhg � hiÞðhg � hiþ1Þ;

hi � h � hiþ1:

where VL is the linear interpolation from ðhi; VðhiÞÞ

and ðhiþ1; Vðhiþ1ÞÞ with hi � hg � hiþ1, the two conse
cutive data points in the look-up table. It follows 
directly that 

jVðhgÞ � VIðhgÞj �
1
8

Δh2 max
h2½hi;hiþ1�

d2VðhÞ
dh2

�
�
�
�

�
�
�
�; hg

2 ½hi; hiþ1�;Δh ¼ hiþ1 � hi; (24) 

Similarly, in an inverse look-up table, for a given Vg 

jhðVgÞ � hIðVgÞj �
1
8

ΔV2 max
V2½VL;VH�

d2hðVgÞ

dV2

�
�
�
�

�
�
�
�; V

2 ½VL; VH�;ΔV ¼ VH � VL: (25) 

In (24)-(25), VðhÞ and hðVÞ are assumed twice differ
entiable functions.

The transport component Ukþ1 is obtained by sol
ving Equation (22), and Vkþ1 can be obtained in a 
similar manner. As done in the continuity equation, 
the wet area and wet volume of the transport cells 
are pre-computed and stored as a function of water 
surface elevation in look-up tables for efficient 
computation.

Figure 3. The volume as a function of the surface elevations. 
the Newton-Raphson solver yields a ‘true’ solution while the 
look up table approach yields an approximate solution where 
the interpolation error is the source of error. If interval levels 
(Δh ¼ hiþ1 � hi) of the lookup table are small enough, it can 
safely assumed that the predicted surface elevations from the 
lookup table and the Newton–Raphson method are approxi
mately equal.
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2.2.5. Boundary condition on the borders of wet/ 
dry edge cells
In SLOSH (Jelesnianski 1992), the transport compo
nents at a transport point in the B-grid are computed 
when all four cells surrounding the point are consid
ered wet; they are set to zero otherwise. In other 
words, a no-slip condition is imposed on the bound
aries of wet/dry cells. For a wet cell having two neigh
boring dry cells on its west and east edge/or its north 
and south edges, this strategy results in zero velocities 
at all its four corners. Therefore, without some reme
dies, the model does not permit flow through a chan
nel of width smaller than the grid size (see Figure 4 for 
illustration). Note that alleviating this drawback is very 
important for the subgrid approach to perform well.

To solve this issue, the SLOSH model resorts to the 
use of cells with the C-grid arrangement locally in the 
portions of the grid where there is a narrow channel that 
cannot be represented properly with the B-grid and the 
no-slip condition. However, these C-grid cells must be 
predetermined at the model development phase.

In this work, as an alternative, we impose a slip 
condition on the wet/dry interface in the computa
tional domain. This addition allows the governing 
equations to be solved on a fully staggered B-grid 
without having to predetermine any channels and 
small features at the model set-up stage. Figure 4 is 
used to illustrated this approach. By imposing the slip 
condition on the cell edges, the tangential compo
nents of transport at nodes along them are no longer 
zero and, as a result, allow the flow to go through the 
channel in the middle of the computational domain. 
This condition is implemented through setting the 
normal mass flux of wet/dry interface edges in 
Equation (18) to zero and using an extrapolated value 
of surface gradients from the wet sides in the discreti
zation scheme of the momentum equation at nodes 

located on such interfaces. In addition, at nodes shared 
by two wet/dry interface edges running in the east/ 
west or north/south direction (e.g. nodes ðm; nþ 1Þ
and ðmþ 1; nÞ in Figure 4), only the transport compo
nent tangential to the segment formed by these two 
edges are computed, while the component perpendi
cular is set to zero; at nodes with three surrounding 
wet cells (e.g. node ðm; nÞ), both U and V components 
are calculated, but, as shall be described below, only 
the certain transport component is used to update the 
surface elevation of cells surrounding the node.

We describe an implementation of the slip condition 
for a case depicted in Figure 5. This case considers a 
transport node ðmþ 1; nþ 1Þ shared by four cells of 
which only one ðm; nþ 1Þ cell is dry (for simplicity, we 
assume that, except the ðm; nþ 1Þ cell, cells neighbor
ing the three wet cells are also wet). At the corner shared 
by three wet cells, the transport components U and V 
are computed. This corner node is part of the wet/dry 
boundary, and thus both transport components at this 
location, Umþ1;nþ1 and Vmþ1;nþ1, are computed. These 
components are advanced in time (see (22) for the U 
component) based on the approximate surface eleva
tion gradient extrapolating from the wet sides

@h
@P
�

hmþ1;n � hm;n

ΔP
;

@h
@Q
�

hmþ1;nþ1 � hmþ1;n

ΔQ
: (26) 

The water surface elevation of the cell ðmþ 1; nÞ is 
advanced as usual through Equation (18) by using 
both transport components at node ðmþ 1; nþ 1Þ. 
For the ðm; nÞ and ðmþ 1; nþ 1Þ cell, only the trans
port components tangential to their respective wet– 
dry interface are used to compute the water surface 
elevation. The mass fluxes normal to the wet–dry inter
face of these cells are set to zero. More precisely, the 
schemes used to update the surface elevation of the 
ðm; nÞ and ðmþ 1; nþ 1Þ correspond to 

Figure 4. Wet area at grid level of a narrow channel in a 
staggered B-grid. Light blue cells are wet and light tan cells 
are dry. The thick red line shows the border of wet/dry cells. 
Green circles are transport points in wet/dry edges. Horizontal 
and vertical arrows denote U and V components of transports, 
respectively. With the no-slip conditions, the wet cells to 
which the channel belong have vanishing transport compo
nents at all four corners.

Figure 5. Schematic of transport computations at interface 
between wet (shown in light blue) and dry (shown in light tan) 
cells. The green circle shows the location of the U and V 
transport components in the boundary of wet/dry cells.
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Vm;nðhkþ1
m;n Þ ¼ Vm;nðhk

m;nÞ

�
Δt

r2
m;nΔS

Uk
mþ1

2;n
� Uk

m� 1
2;n
� Vk

m;n� 1
2

� �
;

(27) 

and 

Vmþ1;nþ1ðhkþ1
mþ1;nþ1Þ ¼ Vmþ1;nþ1ðhk

mþ1;nþ1Þ�

Δt
r2

mþ1;nþ1ΔS
Uk

mþ3
2;n
þ Vk

mþ1;nþ3
2
� Vk

mþ1;nþ1
2

� �
;

(28) 

respectively, where 

Uk
mþ1

2;n
:¼

Uk
mþ1;nþ1 þ Uk

mþ1;n

2
; and Vk

m;nþ1=2 :

¼
Vk

m;nþ1 þ Vk
mþ1;nþ1

2
: (29) 

2.2.6. Wetting/drying algorithm
The wetting/drying algorithm is applied on the con
tinuity and momentum equations. Here, a cell is con
sidered wet (active) when the surface elevation is 
greater than the minimum value of subgrid bed eleva
tion (hk < � maxðbðx; yÞÞ and is considered dry other
wise. In our study, with wet/dry status of cells, the time 
marching is done in two steps as follows:

● First, update the surface elevation through the 
continuity equation. The following techniques 
are applied to compute surge values at future 
time ðk þ 1Þ at the center of the cell:

(1) If all four surrounding corners at the current 
time k of a cell (four transport points) have no 
flow (i.e. zero transports), then computations are 
ignored at the center point, resulting in no 
change in the value of surface elevation of this 
cell.

(2) If the cell is wet and at least one of its surround
ing corners at the current time k has flow, 
Equation (18) is used to update the transport 
nodes.

(3) If computation at the center point results in 
negative VðhkÞ (i.e. b in the right-hand side 
(RHS) of Equation (18) is negative), then the 
cell is set dry at future time ðk þ 1Þ. Note that 
the negative water volume is not permitted; in 
order to prevent this, the transport at present 
time ðkÞ on the four corners is decreased by a 
fixed ratio to exhaust all water in the cell and no 
more, i.e. find a such that the RHS in Equation 
(15) is zero: 

VðhkÞ � aΔt=ð2r2
m;nΔSÞ Uk

mþ1;nþ1 � . . . � Vk
m;n

� �
¼ 0;

(30) 

the surface elevation of the such the cell at k þ 1 is 
then set to � max bðx; yÞ, the minimum of subgrid 
bed elevation of the cell. Surface elevation at contig
uous cells surrounding the four corners are computed 
(or recomputed) with the decreased transport values 
at the four corner points.

(4) If the cell is dry and at least one of the surround
ing cells is wet (there are four surrounding cells), then 
two scenarios are plausible. First, if the minimum 
bathymetry of the dry cell is greater than the maxi
mum surface elevation of surrounding wet cells, then 
the cell is considered dry. Second, suppose the max
imum surface elevation of surrounding wet cells is 
greater than the minimum bathymetry of the cell. In 
that case, the cell is considered wet and has a thin layer 
of surface elevation to include in the calculation. In 
order to conserve mass, the values of the surface ele
vation of its surrounding wet cells are reduced 
accordingly.

● Second, update the transport components 
through the momentum equations. The momen
tum equations are applied after the surface eleva
tion for the entire basin at the future time

ðk þ 1Þ is updated via the continuity equation. The 
following rules are applied for computations with 
momentum equations at corner of the cells:

(1) If all four surrounding cells are dry at future time 
ðk þ 1Þ, transport is set to zero at future time 
ðk þ 1Þ.

(2) If some cells are wet with at least two contigu
ous surrounding cells (cells that share border) 
are wet, the transport is calculated on the trans
port point at future time ðk þ 1Þ via an approach 
described in see Section 2.2.5.

(3) If all four surrounding cells are wet, Equation 
(22) is used to update the transport nodes.

2.2.7. Subgrid surface connectivity
The subgrid model introduced in Sections 2.2.1–2.2.4 
aims to improve the accuracy of the model when 
using a relatively coarse grid. However, excessively 
coarse grids can allow artificial cross flows between 
disconnected areas separated by physical barriers 
smaller than the grid size. A number of approaches 
have been employed based on mesh refinement and 
edge blocking approaches (Hodges 2015; Zhi and 
Hodges 0000; b; Platzek et al. 2016) to deal with 
the subgrid surface connectivity issue. Casulli (2019) 
introduced a cell clone approach to eliminate an 
artificial cross-flow between disconnected regions 
within a cell without requiring further mesh refine
ment. Begmohammadi et al. (2021) extended the cell 
clone approach by breaking the cell clone into sub- 
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clones to remove cross flow when barriers within the 
coarse grids are submerged to deal with the storm 
surge scenario. Splitting and merging sub-clones per
mits a more flexible performance of subgrid models 
to represent the effect of smaller scale barriers that 
are submerged and emerged at different water sur
face elevations.

One example of this type of scenario is barrier island 
chains, which can consist of several islands, and which 
may extend uninterrupted for more than a hundred 
kilometers. Generally, the effect of these narrow bar
riers cannot be captured by the presented subgrid 
model, if the island width is smaller than the grid 
size. Missing the effects of the barriers can lead to an 
overestimation of the water surface elevation when 
barriers should block the path. Here, a simple method 
is presented to represent the effects of the barrier 
islands on the coarse grid. First, the transport control 
volumes with barriers are identified. Second, the 
height of the barrier is determined by checking for 
the disconnected wet areas in a specific range of 
water surface elevations. (These two steps are done 
beforehand as a prepossessing step.) Third, during the 
time stepping, if the water surface elevation does not 
exceed the barrier height, the transport points are 
excluded in the calculation of the continuity equation. 
If the water surface elevation passes the height of the 
barrier, the transport points are activated. We depict 
the approach through Figure 6 which shows the bar
rier islands alongside the control volume over the mass 
cells and a transport cell.

To find the barrier’s height, we first define a reason
able range of water surface elevations (hMin < h< hMax), 
based on extreme inundation and receding water 
levels for the computational domain. Starting from 
hb ¼ hMax, we check whether there is a path of con
nected pixels to reach from one wet edge of the con
trol volume to the opposite wet edge of the control 
volume (i.e. from the west edge to the east edge and 
from the south edge to the north edge). If the con
nected path exists, the process is repeated for 
hb ¼ hb� 2 , ( 2¼ ðhMax � hMinÞ=δ, where δ is the 
number of the barrier’s check levels) until there is no 
path of connected pixels from one edge to the oppo
site edge or reaching hb ¼ hMin. The value of hb at 
which this process terminates is considered the bar
rier’s height. This new algorithm can be automated. 
Note that to implement this method, we take advan
tage of the existing SLOSH barrier to minimize coding.

3. Tests and validation

Here, a set of test cases ranging from idealized domains 
to realistic settings are considered to demonstrate the 
ability of the subgrid model to represent the effects of 
features and channels that are smaller than the grid cell 
on a fully staggered B-grid, without resorting to using 

predetermined C-grid cells. Tests are divided into per
iodic flows in an idealized channel and bay system and 
a real storm on the North Carolina coast. The driving 
forces for the SLOSH model are the wind stress and the 
atmospheric pressure. In the idealized tests, the atmo
spheric pressure is assumed constant. For the realistic 
tests, a parametric wind model for hurricane-induced 
conditions is considered (see section 3.2.2). Telescopic 
polar grids (see Conver et al. (2008) for more details), 
where the grid cells are finer toward the center, are 
considered in all test cases.

3.1. Idealized channel and bay system

An idealized system (Figure 7) consists of an inner bay 
connected to an outer bay via a channel, where the 
outer main bay links to the open ocean. This system is 
used to show the ability of the present model to 
represent channels that are not resolved at the grid 
scale. We consider two configurations (A and B), in 
which the ground surface elevations are varied in the 
land portion within the domain. The high-resolution 
bathymetric data on which all calculations are based 
are described on a telescopic polar grid of 512� 576 
cells with the average grid spacing in the radial and 
tangential directions of Δr ¼ 0:2871 km and Δθ ¼

Figure 6. Schematic of how a barrier island (shown in tan) may 
affect the transport computations. Solid lines show the control 
volume over the mass cells, with red squares in the centers of 
the mass control volumes. Dashed lines show the control 
volume over the transport cell, with a green circle in the center 
of the control volume. At a certain water surface elevation 
when the barrier island splits the transport control volume 
into two separated areas that do not have a connection, the 
transport components are not calculated. When the water 
surface elevation exceeds the barrier height (i.e. barrier is 
submerged), then transport components are computed for 
the point with a barrier.
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0:3487 km, respectively. (Note that Δθ denotes the 
straight distance of arc (r � δθ) where Δθ is the angle 
spacing in radians.) Five (successively refined) grids 
(see Table 1 for more detail) are considered for simula
tions in configuration A, and three grid resolutions are 
considered for configuration B. The channel represen
tation depends on the grid resolution (Figure 8). For 
the coarsest grid (32� 36 radial and tangential cells, 
respectively), the channel is located entirely within one 
strip of cells. For the next-coarsest grid (64� 72), the 
channel is represented partly within two cells in the 
tangential direction. For the finer grids, the channel is 
geometrically resolved. More specifically, there are 2, 4, 
and 8 cells across the channel in the tangential 

direction for grids 128� 144, 256� 288, and 
512� 576, respectively.

Wind stresses are the drivers for this test case, and 
the atmospheric pressure is constant. A time-varying, 
spatially constant wind coming alternately from the 
northwest and southeast directions (155:7365�N and 
335:7365�N) is considered. A wind velocity and hence 
wind stress is assumed to be a sinusoidal function in 
time with a period of 10 hr and a maximum speed of 
70.60 km/hr. This forcing produces fluctuations in sur
face water level of less than 0:6 m from an undisturbed 
water level, and flows connecting the bays occur only 
through the channel. A constant water surface eleva
tion (a clamped boundary condition) is prescribed on 
the wet portion of the open boundary of the main bay. 
Tidal forcing is not considered in the simulations. 
Instead, a mean high water (MHW) elevation of h ¼
0:3048m is used as an initial condition, to mimic a 
typical procedure in SLOSH simulations in which the 
initial water surface elevation is adjusted to MHW.

3.1.1. Configuration A
In this configuration, the wet regions have a bed eleva
tion of −9.14 m below mean sea level, and dry regions 
have a bed elevation of 15.24 m. The average bed 
elevation of the cells that include the channel over 
the coarse grid is 3.048 m for the coarser grids 
(32� 36 and 64� 72), and thus conventional solution 
methods will predict dry regions throughout the chan
nel. For each grid, two types of simulations are con
ducted. The first simulation is the conventional 
method, where SLOSH is run with the bathymetry of 
each cell being an average over a coarse grid and 
without the use of predetermined C-grid cells (i.e. the 
computations are performed entirely with the B-grid). 
The second simulation is the subgrid model with slip 
conditions, where the FV/FV formula presented in sec
tion 2.2 is used.

As expected, the time series of water surface eleva
tions (Figure 9) from all simulations are in good agree
ment at Station 1, which is located in the open water 
where all grids can resolve the flow behavior. At 
Station 2, which is located in the secondary bay, and 
for the coarse grids (32� 36 and 64� 72), the conven
tional method predicts water surface elevations with 
only minimal variations of about 5 cm from their mean 
values. This inaccuracy is caused by the channel not 

Figure 7. Bed elevations for the idealized bay channel test. 
Blue regions have a bed elevation of � 9:1440 m, and yellow 
regions have a bed elevation of 15:2400 m for configuration a 
and 3:048 m for configuration B. The locations of stations 1 
and 2 are indicated. Large arc shows the ocean side of the 
geometry.

Table 1. Grid statistics for the idealized bay and channel test case. Configuration A considers all five grid resolutions, while 
configuration B considers the two coarsest (32� 36 and 64� 72) and finest (512� 576) grid resolutions. Note that straight 
distances are computed in radial and tangential directions, and the effects of grid curvatures are ignored for simplicity.

Grid size (radial � tangential) ð32� 36Þ ð64� 72Þ ð128� 144Þ ð256� 288Þ ð512� 576Þ

Tangential Δθ (km) Minimum 0.921 0.448 0.216 0.105 0.051
Maximum 14.581 7.646 3.922 1.989 1.007
Average 5.404 2.673 1.386 0.696 0.349

Radial Δr (km) Minimum 0.915 0.440 0.213 0.104 0.049
Maximum 15.105 7.858 4.013 2.022 1.020
Average 4.487 2.210 1.143 0.573 0.287
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being resolved sufficiently to allow flow between bays. 
For the finer grids and the conventional method, the 
flow connectivity is resolved through the channel. For 
the conventional simulation on the 128� 144 grid, the 
water surface elevations have an amplitude of about 
0.5 m, although they are damped and phase-lagged 
relative to the results from the finest grids (256� 288 
and 512� 576Þ), which have water surface elevations 
with an amplitude of about 0.7 m. For the subgrid 
model, the coarse grid calculations, 32� 36 and 
64� 72, capture the hydrodynamic connectivity 
between two bays, with amplitudes of about 0.6 m 
and minimal phase lag, thus showing an improvement 
in accuracy relative to the conventional method.

The model performance is quantified via root- 
mean-square errors: 

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

ðhðx; tiÞ � hrefðx; tiÞÞ
2

v
u
u
t ; (31) 

in which N ¼ 162 is the number of water surface 
elevations in a time series, h is a predicted water surface 
elevation, and href is a reference water surface elevation 

(taken as the solution from the subgrid model on the 
finest 512� 576 grid). The ERMS values closer to zero 
represent better agreement with the reference solution. 
For the same grid resolution, the ERMS values in the 
subgrid solution are lower than the conventional 
method for almost all cases. The largest differences are 
for the time series at Station 2 inside the inner bay. For 
the two coarser grids (32� 36 and 64� 72), the ERMS 

values are one order of magnitude lower than those of 
the conventional solution. For the coarsest grid 
(32� 36), the subgrid model has an ERMS ¼ 0:0805 m, 
which is smaller than the conventional method for a 
grid with four times the resolution (128� 144).

3.1.2. Configuration B
In this configuration, the wet regions have bed ele
vations identical to configuration A, but the dry 
regions have a bed elevation of only 3.05 m above 
mean sea level (Figure 7). For the 32� 36 and 64�
72 grids where the channel is under-resolved, the 
averaged bed elevation of cells containing the chan
nel is � 3:0480 m (compared to 15:24 m in 
Configuration A). These cells are flagged as wet 

Figure 8. View of the area enclosed by the red square in Figure 7, for 5 grid sizes: a) grid resolution of 32� 36 radial and tangential 
cells, respectively, b) grid resolution of 64� 72, c) grid resolution of 128� 144, d) grid resolution of 256� 288, e) grid resolution 
of 512� 576.
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cells in the conventional formulation (with the mean 
depth as their bathymetric depth), and the channel is 
part of the wet areas in the computational grids. 
(This is in contrast to Configuration A, where the 
conventional model flags the channel as dry for the 
two coarsest grids.) Note that, for the coarsest grid, 
each of these cells has two neighboring dry cells on 
its edges along the radial direction (a scenario similar 
to that depicted in Figure 4). Numerical results 
demonstrate an ability of the implemented slip 
boundary condition to remedy the shortcoming 
posed by the no-slip condition in this particular 
situation.

The two coarsest grids (32� 36 and 64� 72) and the 
finest grid (512� 576) are used. In addition to the two 
types of simulations described in Configuration A, we also 
consider the conventional method with the slip boundary 
condition imposed on wet/dry boundaries (section 2.2.5).

The water surface elevations at Station 1, located in the 
open water in the main bay, have good agreement with 
the reference solution (Figure 10). However, the water 
surface elevations at Station 2 are predicted inaccurately 
for the coarse grids and conventional method (Figure 10). 
For the 32� 36 grid, the conventional method predicts 
water surface elevations that again deviate by only about 

5 cm from their mean values (It predicts identical results 
with configuration A). This inaccuracy, despite the chan
nel being represented by cells with a positive flow depth, 
stems from the no-slip boundary condition on wet/dry 
cell edges, which prevent transport through the channel 
to the secondary bay.

The slip boundary condition allows transport 
through the channel. For the coarsest grid, this yields 
a much improved results of the water surface eleva
tions with an amplitude of about 0.3 m. Using the 
subgrid model further improves the amplitudes to 
approximately 0.5 m. (It is worth mentioning that, for 
this particular test, if the no-slip condition is used in the 
subgrid approach, no gain over the conventional 
method is observed.)

Table 2 shows the ERMS errors relative to the high- 
resolution simulation (512� 576 subgrid solution) for 
two coarse grids. Because the slip boundary condition 
allows transport through the channel, it has the effect 
of lowering the ERMS by a factor of about 2. The subgrid 
solution then lowers the ERMS by a factor of about 7 to 
8, as its water surface elevations are much closer to the 
reference solution.

Figure 9. Time series of water surface elevations at stations a) 
1 and b) 2 (with locations shown in Figure 7). Dashed lines 
shows the subgrid model, and solid lines show the conven
tional model.

Figure 10. A) Time series of water surface elevations at sta
tions a) 1 and b) 2 (with locations shown in Figure 7). Dashed 
lines shows the subgrid model, dotted lines show the conven
tional model with slip boundary condition, and solid lines 
show the conventional model.
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3.2. Flooding in North Carolina due to Hurricane 
Florence

The North Carolina (NC) coast is characterized by an 
extensive barrier-island system, large sounds and estu
aries, and multiple inlets, channels, and rivers that can 
convey water to low-lying inland locations. More than 
1.2 million people live in the NC coastal region, and 
more than $30 billion in weather-related disasters 
affected the region between 2010 and 2018 (Smith  
2020). Most of those disasters were related to storms, 
with several major hurricanes affecting the region 
since 2010: Irene in 2011, Arthur in 2014, Matthew in 
2016, Florence in 2018, Dorian in 2019, and Isaias in 
2020, each of which caused storm surge, flooding, 
landscape change, and damage to the built environ
ment. Predictions of storm surge during these events 
should benefit from the use of subgrid corrections to 
represent connectivity in coastal NC. Here, we focus on 
Florence in 2018, which was a slow-moving storm that 
pushed storm surge and flooding along the open coast 
and far into inland regions.

3.2.1. Winds and water levels during Florence in 
2018
Florence formed on August 31 2018 and dissipated on 
September 18 2018 (Stewart and Berg 2019). At its 
peak, Florence reached category-4 strength on the 
Saffir-Simpson scale with 1-minute sustained winds of 

67 m/s on September 4–5. The storm’s peak winds 
dropped below major hurricane status by 1200 UTC 
September 13 when the cyclone was located approxi
mately 280 km east-southeast of Wilmington, NC. 
Florence made landfall near Wrightsville Beach, NC 
(Figure 11), at 1115 UTC September 14 as a category- 
1 hurricane with peak wind speed of 41 m/s (Stewart 
and Berg 2019). It moved slowly at and after its landfall, 
dumping nearly 1 m of rain in regions near Wilmington 
and southeast NC (Stewart and Berg 2019). Although 
this rainfall contributed to flooding in the week after
ward, Florence’s strong winds at landfall also created a 
significant storm surge along the open coast and 
within the Pamlico Sound and neighboring estuaries.

Florence’s effects on coastal water levels were 
observed by the U.S. Geological Survey (USGS) (U.S  
2021) at 34 temporary sensors and 36 high-water 
marks (Figure 11 and Tables 3 andB1). At each tempor
ary sensor, time series of the water surface elevation 
were observed, although it should be noted that many 
of the temporary gauges had minimum measurable 
elevations, and thus water levels below these 
elevations could not be observed. The observed 
water levels had maxima of about 2.25 m along the 
coast between Wrightsville Beach, and about 3 m in 
the Neuse River estuary. These high water levels 
caused overtopping of barrier islands at the open 
coast, and they pushed up the estuaries and caused 
flooding of inland communities.

Table 2. Errors ERMS relative to the 512� 576 subgrid solution, computed over 54 hours with 20-min sampling intervals.
Grid size (radial � tangential)

Configuration A ð32� 36Þ ð64� 72Þ ð128� 144Þ ð256� 288Þ ð512� 576Þ

Station 1 Conventional 0.0047 0.0036 0.0014 0.0008 0.0002
Subgrid 0.0097 0.0006 0.0012 0.0002 –

Station 2 Conventional 0.6728 0.7150 0.1466 0.0269 0.0005
Subgrid 0.0805 0.0282 0.0292 0.0068 –

Configuration B
Station 1 Conventional 0.0047 0.0016 – – –

Conventional+BC 0.0010 0.0017 – – –
Subgrid 0.0097 0.0006 – – –

Station 2 Conventional 0.6280 0.2554 – – –
Conventional+BC 0.2978 0.1454 – – –
Subgrid 0.0503 0.0169 – – –

Table 3. Locations and identifiers for selected USGS water-level sensors during Florence. Locations are also shown in Figure 11. 
Model results will be explored via hydrographs (Figure 13) at these stations.

Identifier Station Longitude Latitute Description

1 NCONS00001 −77.1169 34.6875 NC Highway 12 at Swansboro, on the White Oak River, width of about 700 m, about 5 km from 
Bogue Inlet and ocean

2 NCBEA11728 −76.7482 35.3771 Aurora Ferry Terminal on the Pamlico River, estuary width of about 5 km, about 25 km from Pamlico 
Sound

3 NCCAR12128 −76.4561 34.7969 Ferry terminal at Davis on Core Sound, width about 4 km
4 NCPAM13231 −76.6989 35.0247 NC Highway 55 at Oriental on Greens Creek, width about 400 m, on Neuse River estuary with width 

of about 6 km, about 20 km from Pamlico Sound
5 NCNEW12948 −77.9258 34.1135 River Road Park on the Cape Fear River, width of about 1.8 km, about 30 km from ocean
6 NCCRA12508 −77.0189 35.1152 Bridgeton across from New Bern on the Neuse River, width of about 1.5 km, about 60 km from 

Pamlico Sound
7 NCBEA11808 −77.0105 35.5146 Roanoke Christian Camp near Washington on the Pamlico River, width of about 1.5 km, about 55 km 

from Pamlico Sound
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3.2.2. Model setup
A digital elevation map (DEM) was developed to repre
sent the ground surface in NC coastal regions and 
offshore. Topographic and bathymetric data for the 
NC and South Carolina coastal regions were obtained 
at 3-m horizontal resolution from the NOAA Digital 
Coast (CIRES (Cooperative Institute for Research in 
Environmental Sciences) 2014). Offshore bathymetric 
data were acquired from the NOAA bathymetric data 
viewer and global bathymetry and topography at 15 
arc sec (SRTM15+) (National Geophysical Data Center  
1998; Tozer et al. 2019). All topographic and bathy
metric elevations, and all water-level data herein, are 
relative to the North American Vertical Datum of 1988 
(NAVD88) (Zilkoski 1992). These data were blended 
into a DEM in a polar grid (Figure 12, top), with a 
shape adapted from SLOSH grids for the region 
(Conver et al. 2008; Glahn et al. 2009). This high-resolu
tion polar DEM has 2368� 3168 pixels in the radial and 
tangential directions, respectively.

In numerical simulations, we consider two coarse 
grids (Figure 12, bottom) with 148� 198 and 296�
396 radial and tangential cells, respectively. These 
grids are a result of successively de-refining the DEM 
grid. Table 4 gives minimum, maximum, and average 
distances between cell corners in the tangential Δθ 
and radial Δr directions for the two coarse grids and 
the high-resolution DEM. The minimum, maximum, 
and average Δθ and Δr for the coarser grid are 2 
times larger than for the finer grid, and nearly 16 
times larger than for the high-resolution DEM.

SLOSH requires atmospheric inputs to develop the 
surface stresses in its momentum Equations (6) and (7). 
Atmospheric conditions are represented within SLOSH 
via a parametric model (Forbes et al. 2014) with inputs 
of time series of storm track, radius to maximum winds, 
and storm pressure deficit (Jelesnianski 1992). Note 
that the objective of this study is to assess the perfor
mance of the subgrid model in comparison to the 
conventional scheme; we do not focus on obtaining 
the most accurate results relative to the observation, 
and thus we use default parameters recommended in 
Forbes et al. (2014). The best-track information from 
the National Hurricane Center (Stewart and Berg 2019) 
was provided as an input for the parametric model in 
SLOSH. Additionally, all numerical simulations used the 
mean high water level of Wrightsville Beach, 0.4237 m 
relative to NAVD88, as an initial water level, and no 
additional tidal forcing was included. The simulations 

started at 0000 UTC September 12 2018 and ran for 96 
hours through landfall of the storm.

Three types of simulations were performed for each 
grid. The first simulation uses the conventional 
method, in which the SLOSH solver is run with the 
cell-averaged bathymetric elevation without the use 
of predetermined C-grid cells and with the no-slip 
boundary condition on wet/dry boundaries. The sec
ond simulation uses the conventional method, but 
with the slip boundary condition on the wet/dry 
boundaries (referred as the conventional + BC 
method). The third simulation uses the subgrid 
model with slip boundary, as presented in section 2.2.

3.2.3. Model performance at selected USGS water- 
level sensors
The model predictions varied significantly at the 
USGS water-level sensors, depending on whether 
the model could convey flow to locations along 
the coast and inland. At stations near large water 
bodies (either the open ocean or Pamlico Sound), 
the small-scale connectivity was less important, and 
models with the same resolution performed simi
larly. Station 1 (NCONS00001) was located on the 
White Oak River, to the northwest of Emerald Isle 
and about 5 km from the open ocean. At this loca
tion in the grids, the cell sizes were about 1.90 km 
(148� 198) and 0.95 km (296 � 396), which was 
sufficient to represent the connectivity through 
Bogue Inlet and the sensor location at Swansboro. 
Similarly, Station 2 (NCBEA11728) was located on 
the Pamlico River estuary, about 25 km from the 
sound. Although this sensor was far inland, at this 
location in the grids, the cell sizes were about 2.06 
km (148� 198) and 1.03 km (296� 396), which was 
sufficient to represent the connectivity through an 
estuary with a width of about 5 km. Due to this 
sufficient resolution, there were only minimal differ
ences between the three model simulations on each 
grid at these two locations (Figure 13). At the White 
Oak River, the sensor observed a peak water level of 
about 1.9 m NAVD88, the simulations on the lower- 
resolution grid (148� 198) showed a peak of about 
2.4 m, and the simulations on the higher-resolution 
grid (296� 396) gave a peak elevation of about 1.7 
m. At the Pamlico River estuary, the sensor 
observed a peak water level of about 2 m, whereas 
the simulations showed peaks between 1.4 m and 
1.6 m. Although these peaks are not a perfect 

Table 4. Cell size statistics for the SLOSH grids and DEM to describe coastal NC.
Grid size (radial � tangential) (148 � 198) (296 � 396) (2368 � 3168)

Tangential Δθ (km) Minimum 0.52 0.26 0.028
Maximum 10.40 5.30 0.68
Average 3.67 1.84 0.23

Radial Δr (km) Minimum 0.55 0.27 0.03
Maximum 10.90 5.49 0.70
Average 3.22 1.61 0.20
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match with observations, they show the similarity of 
the models at locations with sufficient resolution, 
and they could be improved with higher grid reso
lution, better atmospheric forcing, inclusion of tides 
and wind waves, etc.

However, at locations farther inland, the grid resolu
tion becomes too coarse to represent flows through 
sounds and channels, even when they are relatively 
large in real terms. Station 3 (NCCAR12128) was located 
to the north of Cape Lookout, on the mainland side of 
Core Sound, where the cell sizes were about 2.38 km 
(148� 198) and 1.19 km (296� 396), which was insuffi
cient to represent flows across Core Sound. Similarly, 
Station 4 (NCPAM13231) was located on the Neuse River 
near the opening of Green’s Creek, where the cell sizes 
were about 2.10 km (148� 198) and 1.05 km (296� 396), 
which was insufficient to represent flows from Pamlico 
Sound into the estuary. Because of this, the conventional 
model needed the slip boundary condition to predict 
storm surge at these locations (Figure 13). At Core 
Sound, the sensor observed a peak water level of about 
1.6 m, whereas the conventional model with the slip 
boundary condition predicted a peak of about 1.3 m on 
the higher-resolution grid, and the subgrid model pre
dicted peaks of 1.4 m and 1.2 m on the lower- and higher- 
resolution grids, respectively. At the Neuse River, the 
sensor observed a peak level of about 2.4 m due to waters 
being pushed across the sound and into the estuary, 
whereas the conventional model with the slip boundary 

condition predicted a peak of about 2.1 m on the higher- 
resolution grid, and the subgrid model predicted 1.7 m 
and 1.9 m peaks on the lower- and higher-resolution 
grids, respectively. At these and similar locations, 
although the grid resolution is too coarse to represent 
the flow pathways, the slip boundary condition can allow 
the models to predict storm surge peaks close to the 
observed values.

At locations farther inland, storm surge could only be 
predicted with the subgrid model, due to its ability to 
represent flow pathways below the model scale. Station 5 
(NCNEW12948, −77.9258, 34.1135) was located along the 
Cape Fear River, a little more than halfway between the 
open coast and Wilmington. This water-level sensor was 
elevated and could not observe the tide troughs, but it 
did observe a peak elevation of about 1.7 m. At this 
location in the grids, the cell sizes were about 2.52 km 
(148� 198) and 1.26 km (296� 396): too coarse to repre
sent the Cape Fear River estuary, which has a width of 
about 2 km near this sensor. Because of this, the simula
tions with the conventional method do not wet at this 
location, and even when the slip boundary condition is 
added to the convention method, the peak water level of 
0.6 m was too low (Figure 13). The subgrid model was 
able to represent the storm surge at the location, with 
peaks of about 1.5 m that coincide with the timing of the 
observed peak. The subgrid model predicts a pre-storm 
drawdown (of −0.5 m on the higher-resolution grid), 
which was not able to be observed by the sensor.

Figure 11. Track for Florence near the NC coast, with intensities on the Saffir-Simpson scale for hurricane (H3, H2, H1) and tropical 
storm (TS), and with circles at 6-hr intervals. Locations of USGS observations: (yellow circles) 34 temporary water level sensors; and 
(red squares) 36 high water marks. Selected stations described in Table 3; all stations described in Table B1.
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Similarly, at the top of the estuaries, Station 6 
(NCCRA12508) was located up the Neuse River estuary 
at New Bern, about 60 km from the Pamlico Sound, and 
Station 7 (NCBEA11808) was located up the Pamlico River 
estuary near Washington, about 55 km from the Pamlico 
Sound. The sensors observed peak water levels of 3.1 m 
and 2.2 m at New Bern and Washington, respectively, due 

to waters being “funneled” up the estuaries from the 
sound. Although these estuaries are large in real terms, 
with widths of 1.5 to 2 km at the sensor locations, they are 
small relative to the grid resolution. At the Neuse River at 
New Bern, the cell sizes were about 1.60 km (148� 198) 
and 0.80 km (296� 396), and at the Pamlico River at 
Washington, the cell sizes were about 1.68 km 

Table 5. Error statistics for predictions of peak water levels in the Florence simulations. Out of 70 combined USGS water-level 
sensors and high-water marks, the number of “Dry” stations is presented for each simulation. Root-mean square errors ERMS 

(Equation 31) have units of meters. Coefficients of determination R2 (Equation 32) and best-fit slope a indicate the quality of match 
between observed and predicted peak water levels. Relative times TRel (Equation 33) show additional costs compared to the 
Conventional model.

Grid Simulation Dry ERMSðmÞ R2
all R2

wet aall awet TRel

(148� 196) Conventional 32 1.268 −1.646 −0.171 0.479 0.708 1.00
Conventional+BC 30 1.267 −1.177 0.213 0.555 0.838 1.15
Subgrid 0 0.575 0.325 0.325 0.951 0.951 1.31

(296� 396) Conventional 19 1.063 −0.664 0.238 0.648 0.859 1.00
Conventional+BC 18 1.034 −0.742 0.319 0.667 0.897 1.17
Subgrid 0 0.545 0.338 0.338 0.952 0.952 1.30

Figure 12. Ground surface elevations (m relative to NAVD88) for coastal NC, as represented by (top) high-resolution ground- 
surface data, and (bottom) zoom of computational grids with (left) 148� 198 cells and (right) 296� 396 cells.
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(148� 198) and 0.84 km (296� 396). Because of this, the 
conventional model did not predict storm surge at these 
locations for either grid or either boundary condition 
(Figure 13). However, the subgrid model did predict 
storm surges with peak water levels of about 2.7 m and 
1.9 m, respectively. The predictions at these far-inland 
locations show the ability of the subgrid model to repre
sent flow pathways below the model grid.

3.2.4. Model performance for peak water levels
Florence’s effects on water levels in coastal NC are 
described at the selected stations in the previous sec
tion, but also more comprehensively at the 70 USGS 

stations (34 water-level sensors and 36 high-water 
marks). Observed peak water levels from the sensors 
can be combined with the high-water marks to provide 
a larger inundation dataset: by comparing peak-to- 
peak between observations and predictions (Table 5), 
we can quantify the models’ performance.

This comparison is challenging because the simula
tions with the conventional method did not predict 
flows at all stations, as shown anecdotally in Figure 13. 
Of the 70 stations, the conventional method left dry 32 
stations on the lower-resolution grid (148� 196) and 
19 stations on the higher-resolution grid (296� 396) 
(Table 5, third column). The slip boundary condition 

Figure 13. Time series of water surface elevation (m relative to NAVD88) at selected USGS water-level sensors during Florence in 
2018. Observation Subgrid model (296 × 396) ; Subgrid model (148 × 198) ; Conventional model (296 × 396) ; 
Conventional model (148 × 198) ; Conventional model with slip boundary condition (148 × 198) ; Conventional model with 
slip boundary condition (148 × 198) .
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helps incrementally, by wetting one or two additional 
stations. However, the subgrid model offers a signifi
cant improvement, as it predicts flows at all stations. 
This behavior is expected, because the subgrid correc
tions permit flow through features smaller than the 

grid scale, allowing floodwaters to reach stations that 
otherwise would have been predicted as dry.

For the following peak-to-peak analyses, we con
sider comparisons both at all stations (“all”) and at 
stations predicted as wet in every simulation (“wet”) 

Figure 14. Comparison of observed and predicted peak water levels for Florence. The solid black circles are the wet stations 
predicted by each model. The magenta circles show the dry stations predicted by each model. The black solid line ( ) is 1:1 
line. The blue solid line ( ) is the best fit (y ¼ awetx) for only the wet stations. The red dashed line ( ) denotes the best fit 
(y ¼ aallx) for all stations.

192 A. BEGMOHAMMADI ET AL.



(Table 6, last four columns). For each simulation, three 
quantities are used to measure the model perfor
mance: (i) root-mean-square error (ERMS, Equation 31), 
which is a measure of the magnitude of error; (ii) 
coefficient of determination (R2), which describes 
how well a regression line fits a dataset: 

R2 ¼ 1 �
P
ðyi � fiÞ

2

P
ðyi � �yÞ2

; (32) 

where yi is the observation data for each station and 
fi denotes the model prediction for each station, and 
which is calculated relative to the 1 : 1 line; and (iii) best- 
fit slope (a from y ¼ ax line), which indicates the overall 
performance of the model to predict the magnitude of 
the peak surge. Note that the ideal agreement based on 
each of these metrics correspond to ERMS ¼ 0, R2 ¼ 1, 
and a ¼ 1. Two coefficients of determinations were 
calculated: R2

all for all stations, and R2
wet for the stations 

that were wetted in all simulations. In addition, two y ¼
ax lines were fitted to the data: indicator aall denotes the 
best fitted line when all stations are considered, while 
awet shows the fitted line with dry stations excluded.

The best-fit slopes are improved with the higher- 
resolution grid, slip boundary condition, and subgrid 
model (Table 6 and Figure 14). For the conventional 
model and the lower-resolution grid (148� 196), the 
overall best-fit slope aall ¼ 0:479, which includes the 
“dry” elevation values (at the initial MHW condition) at 
32 stations. When only the wet stations are considered, 
its best-fit slope improves to awet ¼ 0:708. This trend is 
repeated for the higher-resolution grid (296� 396) and/ 
or the slip boundary condition; for each simulation, the 
best-fit slope improves significantly when only the wet 
stations are considered. For the conventional model 
with the slip boundary condition on the higher-resolu
tion grid, the best-fit slope for the wet stations is 
awet ¼ 0:897, indicating a good match between 
observed and predicted peak water levels. The subgrid 
model offers another improvement, with best-fit slopes 
of 0.95 on both grids, and with water at all stations.

These trends are also repeated for the root-mean- 
square errors and coefficients of determination. For the 
conventional model on either grid, the R2

all values are 
negative, indicating a poor match between observed 
and predicted peak water levels. (Negative R2 values 
are possible because it is calculated relative to the 1 : 1 
line.) For the subgrid model on either grid, the R2 

values increase to about 0.33, indicating a better 
match but with significant scatter (Figure 14). For 
both grids, the ERMS values decrease with the no-slip 
boundary condition and the subgrid corrections, to 
where the subgrid model has ERMS � 0:55m. These 
error statistics could be improved further with higher- 
resolution grids, fully dynamic atmospheric forcing, 
tides and wind waves, etc.

3.2.5. Computational cost
The numerical extensions introduced here do have a 
computational cost (Table 6), which we consider as a 
ratio TRel: 

TRel ¼
Twall� clock

Twall� clock;Conventional
; (33) 

where Twall� clock is a wall-clock time for a simulation. 
For the higher-resolution grid, the wall-clock times are 
increased by a factor of about 4, as expected, because 
the DOFs increase by four times in the finer grid. The 
slip boundary condition increases the computational 
cost by about 16% (TRel � 1:15) relative to the conven
tional model. And in its current implementation, the 
subgrid model increases the computational cost by 
about 31% (TRel � 1:31) relative to the conventional 
model on the same grid resolutions. It is noted that 
the SLOSH model has been optimized for decades to 
provide fast forecasts during storms, whereas our 
numerical extensions have not been optimized.

Although the subgrid corrections introduced an addi
tional computational cost to the model, subgrid results 
on coarser grids showed similar or greater accuracy than 
conventional methods on finer grids with and without 
the slip boundary condition. Thus, for a desired level of 
accuracy (e.g. an acceptable ERMS value), the subgrid 
model may be applied on a coarser grid, which would 
allow for faster computations. Therefore, considering 
both accuracy and computational cost, the subgrid 
model has an overall gain in computational efficiency.

4. Discussion and conclusions

In this study, subgrid corrections were implemented 
into the widely used SLOSH model to improve surge 
propagation into small channels, and other inland 
regions, and so to increase its range of applicability. 
Although improvements to friction, addition of con
vective accelerations, and removal of the maximum 
depth limitation would also be valuable additions, 
they are beyond the scope and resources of this 
work; indeed, such a level of change would create a 
substantially new model. Thus, we confine ourselves 
to two changes: (1) Incorporating subgrid corrections; 
and (2) Removing the no-slip wall boundary condi
tion. These corrections were tested on various 
domains and showed improved accuracy both for 
idealized and realistic storm surge scenarios. The sub
grid model can represent hydraulic connectivity and 
water-level calculations on coarse grids in which small 
hydraulic features are not resolved at the grid scale. 
The improvement of the results shows the ability of 
the subgrid model to represent small hydraulic fea
tures within partially wet cells without the use of 
small grid sizes as would be required in a conven
tional model.
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Major findings are:

(1) A slip boundary condition allows flow through small 
channels on a B-grid. It can improve the results of low- 
resolution models in which narrow channels are not 
resolved at the grid level without using a staggered C- 
grid and predetermining the flow paths. In 
Configuration B of the idealized channel and bay sys
tem test case, using the slip boundary condition in the 
conventional approach alone reduces its ERMS values in 
the water surface elevation approximately by a factor 
of two at the location in the back bay where the flows 
can only be reached through the channel.

(2) Subgrid corrections improve the accuracy of the 
model where features smaller than the grid scale 
are important. We showed that a combination of 
the slip boundary condition on wet/dry edges 
with the subgrid model (FV/FV formula on the 
staggered B-grid with the free-slip boundary con
dition on the interface of wet/dry cells) represents 
the effects of narrow channels and small features 
alongside the coastlines. This advantage of the 
subgrid model can be seen in the real scenario 
of inundation induced by Hurricane Florence. The 
subgrid model shows improvements in all statisti
cal quantities, which include the ERMS error, the R2 

value, and the slope of the linear best fit, used to 
evaluate the model’s ability to predict the max
imum water height at different locations. As a 
recap, for example, for the coarse grid with the 
grid sizes ranging from 0:5 to 10 km, the subgrid 
model improves the R2 value from a negative 
value seen in the conventional approach to 
roughly 0.33.

(3) For a given grid, introducing subgrid corrections 
increases the computational cost moderately; how
ever, the subgrid corrections increase accuracy on 
coarser grids, leading to an overall gain in computa
tional efficiency. With our current implementation, 
the subgrid model increases the computational cost 
by 5 to 35% on the same grid. However, the sub
grid model’s predictions on coarser grids had a 
comparable accuracy to predictions from the con
ventional model on finer grids. Thus, the additional 
computational costs are small when compared to 
the accuracy offered by using coarser grids with the 
subgrid corrections.

These findings have implications for real-time 
forecast for storm surge, which can be improved 
with subgrid models that offer higher accuracy (via 
better representation of small-scale flow pathways 
and barriers) and/or higher efficiency (via faster run- 
times by using coarsened grids). These improve
ments allow users to automatically build an appro
priate SLOSH grid based on their required 
applications without dependency on the existing 
SLOSH grids.
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Appendix A. Equations of Motion for Storm Surge With Bottom Stress

Below, the derivation of bottom stress coefficients for the governing equations of the SLOSH model is briefly summarized; we 
refer to Jelesnianski (1967), Jelesnianski (1992) for the full detailed account of the derivation. Welander (1961) presented a 
specific form of momentum equations to model the storm surge. Without the advection and horizontal mixing terms, the 
momentum equations in the Cartesian coordinate system with hydrostatic approximation can be written in complex form as 
(Welander 1961): 

@w
@t
¼ q � ifwþ

@

@z0
ν
@w
@z0

� �

¼ 0; (A1) 

where 

w ¼ uþ iv; q ¼ � g
@ðh � h0Þ

@x
þ i

@ðh � h0Þ

@y

� �

; i2 ¼ � 1 (A2) 

and ðx; yÞ denotes the horizontal coordinates, z0 is the vertical coordinate, ν is vertical kinematic eddy viscosity. f , g, and h0 

denote the Coriolis parameter, gravity and hydrostatic height due to surface pressure, respectively.
Instead of formulating the equations with transport fields as typically done by vertically depth integrating (A1) and assuming 

the bottom friction as a quadratic function of transports (which would result in a more traditional form of SWE), SLOSH 
considers an alternative system of representing the bottom stress derived by Platzman (1963). In this system, the surface 
boundary condition is taken to be 

ν
@w
@z0

� ��
�
�
�

z0¼h
¼ R ¼ xτ þ iyτ (A3) 

where R denotes the complex form of the (quadratic) surface wind stress while the bottom condition is formulated as: 

ν
@w
@z0

� ��
�
�
�

z0¼� D
¼ swjz0¼� D (A4) 

where s denotes a slip coefficient. The system is obtained from applying the transformation z ¼ Dþz0
Dþh to Equation (A2) (to 

make the vertical coordinate dimensionless), treating the time derivative term in (A1) as an operator, and ‘formally’ solving the 
resulting second order differential equation in z with the aforementioned surface and bottom stress boundary conditions. 
Subsequently, the resulting solution is integrated in the vertical direction with respect to z from -1 to 0, yielding: 

ην½σ
2 þ GðσÞ�M ¼ Qþ ½1þ λðσÞ�R (A5) 

where ην ¼ ν=ðDþ hÞ2, σ2 ¼ η� 1
ν if þ @

@t

� �
, M ¼ Uþ iV is the complex transport, and 

GðσÞ ¼
σ2

νσ2

sðDþhÞ þ σ coth σ � 1
h i ; λðσÞ ¼

1 � σ
sinh σ

νσ2

sðDþhÞ þ σ coth σ � 1
h i :

To obtain a simpler form amenable to numerical calculations, G and λ are estimated by truncating Taylor’s expansion around 
σ2

0 ¼ ifb2=ν (Jelesnianski 1992; Platzman 1963): 

GðσÞ � G0ðσ0Þ þ
ðDþ hÞ2

ν
G1ðσ0Þ

@

@t
; λðσÞ � λ0ðσ0Þ þ

ðDþ hÞ2

ν
λ1ðσ0Þ

@

@t
;

where the subscripts 0 and 1 denote the zeroth and first derivatives regarding σ2, and the derivatives are calculated at 
σ2 ¼ σ2

0. With these approximations, (A5) becomes: 

@M
@t
¼ BQ � ifAMþ ½C þ

J
if
@

@t
�R (A6) 

where 

A ¼
1 � σ2

0G0

1þ G1
; B ¼

1
1þ G1

; C ¼
1þ λ0

1þ G1
; J ¼

σ2
0λ1

1þ G1 

The real and imaginary parts of (39) when the J term is excluded (for more details about omitting the J term, see Jelesnianski 
(1967)) correspond to 

@U
@t
¼ � gðDþ hÞðBr

@ðh � h0Þ

@x
� Bi

@ðh � h0Þ

@y
Þ

þ fðArVþ Af UÞ þ Crxτ � Ciyτ;

(A7) 

and 

@V
@t
¼ � gðDþ hÞðBr

@ðh � h0Þ

@y
� Bi
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@x
Þ

� fðArU � Af VÞ þ Cryτ þ Cixτ;

(A8) 
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Appendix B. Measurement Locations

Table B1. Locations and identifiers for USGS observations during Florence. Locations are also shown in Figure 11. Model results 
were explored via hydrographs (Figure 13 at selected water-level sensors with identifiers in the first column).

Water-level sensors High-water marks

Identifier Station Longitude Latitude Station Longitude Latitude

2 NCBEA11728 −76.7482 35.3771 NCBEA06921 −76.6097 35.4488
NCBEA11768 −76.8156 35.4772 NCBEA11768 −76.8147 35.4772

7 NCBEA11808 −77.0105 35.5146 NCBEA26931 −76.9721 35.4385
NCBEA13648 −76.6147 35.5329 NCBRU00012 −78.4360 33.8867
NCBRU11851 −78.3705 33.9509 NCBRU11868 −78.2972 33.9108
NCBRU12068 −78.0179 33.9170 NCBRU11888 −78.1469 33.9128
NCCAR00012 −76.6085 34.7892 NCBRU11891 −78.0821 33.9036

3 NCCAR12128 −76.4561 34.7969 NCBRU11908 −78.3738 33.9140
NCCAR12288 −76.6714 34.7681 NCBRU11909 −78.2378 33.9217
NCCAR12409 −76.8957 34.6902 NCCAR12410 −76.9464 34.7226
NCCHO12448 −76.6840 36.0551 NCCAR12412 −77.0340 34.6605

6 NCCRA12508 −77.0189 35.1152 NCCAR27260 −76.7232 34.7286
NCCRA12509 −76.9677 35.0659 NCCRA27110 −77.1486 35.2187
NCDAR00003 −75.5010 35.3473 NCNEW00003 −77.9054 33.9979
NCDAR00008 −75.7718 36.2217 NCNEW00004 −77.8813 34.0570
NCDAR12729 −75.6432 35.2242 NCNEW27302 −78.0003 34.3319
NCDAR12788 −75.4614 35.5851 NCNEW27410 −77.9197 33.9831
NCDAR12790 −75.5194 35.2662 NCNEW27421 −77.9471 34.2140
NCNEW00002 −77.9397 33.9613 NCNEW27471 −77.8604 34.1502
NCNEW12868 −77.8792 34.1071 NCNEW27844 −77.7930 34.2092
NCNEW12908 −77.9190 34.0507 NCONS13048 −77.4117 34.4961
NCNEW12928 −77.8875 34.0779 NCONS13108 −77.3501 34.6564

5 NCNEW12948 −77.9258 34.1135 NCONS26864 −77.2748 34.5680
1 NCONS00001 −77.1169 34.6875 NCONS27004 −77.4349 34.7504

NCONS13128 −77.3954 34.5762 NCONS27007 −77.3542 34.7355
NCPAM13230 −76.8071 34.9675 NCONS27014 −77.4327 34.7421

4 NCPAM13231 −76.6989 35.0247 NCONS27016 −77.1136 34.7082
NCPAM13248 −76.6008 35.0827 NCONS27020 −77.4270 34.7621
NCPAS13288 −76.2164 36.3031 NCONS27077 −77.1934 34.7023
NCPEN00001 −77.7330 34.3113 NCPAM26921 −76.7632 35.1442
NCPER00001 −76.4544 36.1931 NCPAM27039 −76.7632 35.1442
NCTYR13548 −76.1846 35.9878 NCPEN00003 −77.6282 34.3654
NCTYR13568 −76.0288 35.9055 NCPEN13368 −77.5453 34.4248
SCHOR17780 −78.7928 33.7586 NCPEN27841 −77.6437 34.3530

NCONS27057 −77.1292 34.6835
SCHOR14333 −78.7364 33.7928
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