Baroclinic 3D ADCIRC from Synthetic Tests to Real NC Storms

JC Dietrich¹

¹Dep't of Civil, Construction, and Environmental Engineering, NC State Univ

ADCIRC Coordination Virtual Meeting, 23 Jan 2023

1. Updates to Baroclinic 3D ADCIRC

- 1.1 Summary of Updates
- 1.2 Baroclinic Pressure Gradients
- 1.3 Resolution Sensitivity and Bathymetry Smoothing
- 1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering

2. Storm Effects on Salinities in NC Estuaries

- 2.1 Background and Relevant Studies
- 2.2 Methods
- 2.3 Results
- 2.4 Takeaways

Conclusions and Future Work

Conclusions and Future Work Thanks for Your Attention!

Updates to Baroclinic 3D ADCIRC

A Fathi¹, JC Dietrich², CN Dawson³, CA Blain⁴, R Cyriac⁵, KM Dresback⁶, RL Kolar⁶, A Samii⁷

¹ExxonMobil Technology and Engineering, Annandale NJ
 ²Dep't of Civil, Construction, and Environmental Engineering, NC State Univ
 ³Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin
 ⁴Oceanography Division, Naval Research Laboratory, Stennis Space Center
 ⁵Atkins, Raleigh NC
 ⁶School of Civil Engineering and Environmental Science, Univ Oklahoma
 ⁷ExxonMobil Upstream Research Company, Houston TX

・ロト ・四ト ・ヨト ・ヨト

1.1 Summary of Updates Improvements to BPGs, Stability

In a project after the Deepwater Horizon oil spill, Arash Fathi updated a few aspects of the baroclinic 3D ADCIRC:

- 1. Interpolation of baroclinic pressures
- 2. Automated bathymetry smoothing
- 3. and 4. Biharmonic operators for viscosity/diffusion
- 5. Adaptive filtering of velocity solution

These updates were added to the ADCIRC Github repository a few years ago

- But the 'hooks' were broken to the rest of the code
- I have debugged over the past year, and now everything seems to be working okay

These updates have helped some recent studies with the baroclinic 3D ADCIRC

1.1 Summary of Updates Example of Baroclinic 3D ADCIRC

Sea surface velocities (m/s) predicted during mid-June 2010 due to a baroclinic 3D ADCIRC simulation. The times are: a) 2010/06/13/1300UTC (12.54 days);

b) 2010/06/15/0800UTC (14.33 days); c) 2010/06/17/0800UTC (16.33 days); and d) 2010/06/19/0000UTC (18.00 days).

▲ロト ▲御 ト ▲ ヨ ト ▲ ヨ ト ― ヨ ― のくぐ

1.2 Baroclinic Pressure Gradients Additional Pressure Forces in Momentum Equations

Changes in temperature and salinity, cause changes in density, cause changes in pressure

- These pressure gradients can drive circulation and transport

These pressure gradients appear as forces in the momentum conservation equations:

- If we are not too picky about the form of the equation, e.g. for the x-direction:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv = -g \frac{\partial}{\partial x} \left[\zeta + P_s/g\rho_0 - \alpha \eta \right] + \frac{\partial}{\partial z} \left(\frac{\tau_{zx}}{\rho_0} \right) - b_x + m_x$$

where the baroclinic pressure gradients are given by:

$$b_x = \frac{\partial P}{\partial x} = \frac{g}{\rho_0} \frac{\partial}{\partial x} \int_z^{\zeta} (\rho - \rho_0) \, \mathrm{d}z$$

・ロト・4回ト・4回ト きょうへの
 6

1.2 Baroclinic Pressure Gradients Challenges due to Solution on σ Levels

A key challenge is how to compute these baroclinic pressure gradients in 3D

– ADCIRC (and many other models) discretize the water column with σ levels:

- These levels make it challenging to compute horizontal derivatives:

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x_{\sigma}} + \frac{\partial P}{\partial \sigma} \frac{\partial \sigma}{\partial x}$$

Figure: Wang et al. (2004) JGR Oceans

1.2 Baroclinic Pressure Gradients Interpolation to Horizontal *z* Level

A common approach is to evaluate an untransformed horizontal derivative

- Baroclinic pressures are mapped to a constant z level, and then gradients are computed

- We need to minimize any errors in the interpolation
 - Very small roundoff errors can accumulate and drive significant circulation

Figure: Wang et al. (2004) JGR Oceans

1.2 Baroclinic Pressure Gradients Update #1 : Interpolation of Baroclinic Pressures

We made several improvements to the workflow to compute the baroclinic pressures

1. Temperature and salinity are converted to density

$$\rho = \rho(T, S(, p))$$

- Previous: Density computed at σ levels
- Now: Density computed at any depth, using cubic interpolation for temperature and salinity
- 2. Baroclinic pressures are computed by integrating the density

$$P = rac{g}{
ho_0} \int_z^\zeta \left(
ho -
ho_0
ight) \, \mathrm{d}z$$

- Previous: Trapezoidal rule in each layer
- Now: 2-point Gauss-Legendre quadrature in each layer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

1.2 Baroclinic Pressure Gradients Update #1 : Interpolation of Baroclinic Pressures

We made several improvements to the workflow to compute the baroclinic pressures

3. Gradients are computed on horizontal z levels:

$$b_x = \frac{\partial P}{\partial x}$$

- Previous: Linear interpolation of baroclinic pressures
- Now: Cubic interpolation of baroclinic pressures

1.2 Baroclinic Pressure Gradients Expectations for Results

Thus, at all stages, we are trying to minimize the roundoff errors as much as possible

- But it is impossible to remove them entirely

2 km

11

э

11

э

12

12

1.3 Resolution Sensitivity and Bathymetry Smoothing Results are Sensitive to Horizontal and Vertical Resolution

1.3 Resolution Sensitivity and Bathymetry Smoothing Results are Sensitive to Horizontal and Vertical Resolution

1.3 Resolution Sensitivity and Bathymetry Smoothing Metrics for Resolution

There are common metrics for the mesh resolution

- For the horizontal resolution:

$$rx_0 = \frac{|h_i - h_j|}{h_i + h_j}$$

where i and j are neighboring vertices

- As $\Delta x \rightarrow 0$, this metric $rx_0 \rightarrow 0$... horizontal resolution helps!
- For the vertical resolution (Haney number):

$$rx_{1} = \frac{|h_{i}^{k} - h_{j}^{k} + h_{i}^{k-1} - h_{j}^{k-1}|}{h_{i}^{k} + h_{j}^{k} - h_{i}^{k-1} - h_{j}^{k-1}}$$

where k and k - 1 are neighboring layers

– As $\Delta z
ightarrow$ 0, this metric $rx_1
ightarrow \infty$... vertical resolution may not help on its own!

1.3 Resolution Sensitivity and Bathymetry Smoothing Update #2 : Automated Bathymetry Smoothing

Arash wrote a code to smooth the bathymetry in an ADCIRC mesh to minimize rx_0 and rx_1

- Loop over all element/layer edges, adjust depths
- Iterate to an acceptable results

This smoothing can be applied selectively:

- In Cyriac (2020), smoothing was applied to all depths larger than 15 m
- In Rumbaugh (2021), smoothing was applied to depths between 0 and 5 m $\,$

Smoothed

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Laplacian Operator for Viscosity

In ADCIRC's momentum equations, another forcing is the lateral stress gradient

- Represented in the equations as:

$$m_x = E_h \nabla^2 u$$
 $m_y = E_h \nabla^2 v$

in which E_h is a lateral eddy viscosity

- This Laplacian operator can be over-diffusive, especially in problems with a wide range of spatial scales
- Need a way to tie the viscosity to the local mesh size

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Update #3 : Biharmonic Operator for Viscosity

Arash implemented a biharmonic operator for the lateral stress gradient

- Given by:

$$m_x = E_h \nabla^2 \nabla^2 u \qquad m_y = E_h \nabla^2 \nabla^2 v$$

in which the eddy viscosity uses a modified Leith formula:

$$E_h = \frac{L^5}{8\pi^3} \sqrt{\Lambda^6 |\nabla \omega|^2 + \Lambda^6_d |\nabla \nabla \cdot u_h|^2},\tag{1}$$

in which the quantities $\nabla \omega$ and $\nabla \nabla \cdot u_h$ are functions of the horizontal velocities u and v, and Λ can be related to the local mesh size L:

$$\Lambda = 1.4 + \frac{2.5 - 1.4}{6000 - 100} \ (L - 100), \quad 1.4 \le \Lambda \le 2.5.$$

- This implementation allows the horizontal eddy viscosity to vary with the local resolution

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Update #4 : Biharmonic Operator for Diffusivity

Similarly, in the transport equation, there is a horizontal diffusion operator

- Given by:

$$\mathcal{D}_h(c,N_h)=N_h\nabla^2 c$$

in which c is a transported species (S or T), and N_h is a diffusivity coefficient

- Arash implemented a biharmonic operator:

$$\mathcal{D}_h(c,N_h)=N_h\nabla^2 c$$

with:

$$N_h = E_h$$

- Thus the horizontal diffusion can also vary with the local resolution

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Update #5 : Adaptive Filtering of Velocity Solution

The last update is a new adaptive scheme that filters the velocity field

- Similar to filters in SELFE and MITgcm

Based on a weighted average of the velocities at its neighbor vertices

- Weights are locally adjusted, based on the local velocity field, local grid spacing, and local viscosity magnitude
- Based on a quantity similar to that of the local element Péclet number

Should be adaptive to flow conditions:

- Minimal when the flow is well-resolved, i.e. in regions with high resolution and low velocity magnitudes
- Significant when mesh resolution is coarse and velocity field has large magnitudes

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Example of Instability

Figure: Danilov et al. (2012) Ocean Modelling

э

1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering Improvements to BPGs, Stability

In a project after the Deepwater Horizon oil spill, Arash Fathi updated a few aspects of the baroclinic 3D ADCIRC:

- 1. Interpolation of baroclinic pressures
- 2. Automated bathymetry smoothing
- 3. and 4. Biharmonic operators for viscosity/diffusion
- 5. Adaptive filtering of velocity solution

These updates were added to the ADCIRC Github repository a few years ago

- But the 'hooks' were broken to the rest of the code
- I have debugged over the past year, and now everything seems to be working okay

These updates have helped some recent studies with the baroclinic 3D ADCIRC

1. Updates to Baroclinic 3D ADCIRC

- 1.1 Summary of Updates
- 1.2 Baroclinic Pressure Gradients
- 1.3 Resolution Sensitivity and Bathymetry Smoothing
- 1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering

2. Storm Effects on Salinities in NC Estuaries

2.1 Background and Relevant Studies

- 2.2 Methods
- 2.3 Results
- 2.4 Takeaways

Conclusions and Future Work

Conclusions and Future Work Thanks for Your Attention!

Storm Effects on Salinities in NC Estuaries

BA Rumbaugh¹, JC Dietrich², CA Blain⁴, R Cyriac⁵, CN Dawson³, KM Dresback⁶, RL Kolar⁶

¹Environmental Resources Management, Raleigh NC
 ²Dep't of Civil, Construction, and Environmental Engineering, NC State Univ
 ³Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin
 ⁴Oceanography Division, Naval Research Laboratory, Stennis Space Center
 ⁵Atkins, Raleigh NC
 ⁶School of Civil Engineering and Environmental Science, Univ Oklahoma
 ⁷ExxonMobil Upstream Research Company, Houston TX

2.1 Background and Relevant Studies ADCIRC Studies of Estuarine Circulation

ADCIRC has been applied to understand estuarine circulation due to storms ...

- Sebastian *et al.* (2014) investigated maximum water levels and behavior of storm surge for Ike (2008) in Galveston Bay, Texas
- Yin *et al.* (2017) investigated the effect of sea level rise and typhoon intensification on storm surge in the Pearl River Estuary, China

... or due to density differences:

- Dresback et al. (2010) applied a coupled model to the Northern Gulf of Mexico
- Cyriac *et al.* (2020) investigated the tidal, wind, and density-driven circulation at Choctawhatchee Bay, Florida

2.1 Background and Relevant Studies Albemarle and Pamlico Estuarine System (APES)

୬ ଏ ୯ 25

-

► 4 Ξ ►

2.1 Background and Relevant Studies Irene (2011) Tracked Over APES and Caused Fish Kills

2.1 Background and Relevant Studies Questions, Goal and Objectives

Questions about how estuaries respond to storms:

- How does the density stratification (horizontally and vertically) change during the storm?
- How quickly does it restratify after the event?

Our goal was to understand how salinities and temperatures in the Albemarle-Pamlico Estuarine System (APES) are disturbed during and recover after a storm

Our objectives were:

- Develop a baroclinic 3D ADCIRC model for circulation and transport in this system
- Apply all forcings to simulate Irene (2011)
- Quantify the storm effects on density distributions

2.2 Methods Cut APES From the NC9 Mesh

Trimmed mesh has 60,330 vertices, resolution from 5 km to 50 m

2.2 Methods Apply River Fluxes from USGS

Tide and Atmospheric Forcing

We applied tides at the two ocean boundaries:

- Interpolated from the EC2015 tidal database
- Eight leading constituents

We applied atmospheric forcing with a parametric vortex model:

- Generalized Asymmetric Holland model (GAHM)
- Best-track parameters from the NHC
- Covers 0000 UTC August 21 to 0000 UTC August 29

Initial Conditions for Density

ADCIRC needs initial conditions for temperature and density

- Could start from a basic distribution and allow ADCIRC to develop a realistic stratification
- But APES residence times are on the order of months
- Better to start with something realistic

SalWise

- Database for salinity, temperature, and other water quality parameters
- Developed by Dr. Niels Lindquist (UNC) and Dr. Stephen Fegley (UNC)
 - "Development of a Comprehensive North Carolina Salinity Database to Facilitate Management and Restoration of Critical Fish Habitats"
- Has more than 1,980,000 records
- Dates range from 1945 to 2014

SalWise Data are Limited

However, it is challenging to develop fields from SalWise

- Limited data points and coverage in APES
- August 2011 had 25,580 points at surface, 237 points at bottom
- All Augusts (any year) had 158,665 points at surface, 3,789 points at bottom

2.2 Methods Fields for Initial Salinity, Temperature

Salinity

Temperature

We Cannot Get Any More Complicated Than This

Simulations and Analysis Zones

Series of simulations to build up to the storm and then examine behavior afterward

8/06	8/16	8/21 8/	'29	9/12
DiagnosticTides	 Prognostic Tides Rivers Density 	 Prognostic Tides Rivers Density Atmospheric 	 Prognostic Tides Rivers Density 	

Analyze responses of mesohaline, polyhaline, euhaline zones

 Optimal living conditions for blue crabs (polyhaline/euhaline) and oysters (mesohaline/polyhaline/euhaline)

2.4 Takeaways

Significant Transport of Saline and Fresh Waters

The main findings from this study were:

- In the eastern Albemarle Sound, surface salinities can increase by as much as three zones
- Most of Pamlico Sound stayed within the polyhaline zone throughout Irene
- Waters near Roanoke Island saw the largest changes in salinity
- The Neuse and Tar-Pamlico Rivers experienced saline intrusions during the storm and fresh extrusions after the storm.
- Potential for long-duration freshwater intrusions, detrimental to ecosystem

1. Updates to Baroclinic 3D ADCIRC

- 1.1 Summary of Updates
- 1.2 Baroclinic Pressure Gradients
- 1.3 Resolution Sensitivity and Bathymetry Smoothing
- 1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering

2. Storm Effects on Salinities in NC Estuaries

- 2.1 Background and Relevant Studies
- 2.2 Methods
- 2.3 Results
- 2.4 Takeaways

Conclusions and Future Work

Conclusions and Future Work Thanks for Your Attention!

Conclusions and Future Work

Updates to baroclinic 3D ADCIRC:

- Improvements to baroclinic pressure gradients, bathymetry smoothing, viscosity/diffusion operators, and velocity filtering
- Additions have been debugged in a recent ADCIRC version

Storm effects on density stratification in NC estuaries:

- Developed a baroclinic 3D ADCIRC model for Irene (2011) in APES
- Quantified intrusions of brackish and saline waters into Albemarle Sound during the storm, fresh waters past Roanoke Island after the storm

Future work:

- Publish code changes and examples/documentation
- Get these papers out!

Thanks for Your Attention!

