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1.1 Summary of Updates
Improvements to BPGs, Stability

In a project after the Deepwater Horizon oil spill, Arash Fathi updated a few aspects of the
baroclinic 3D ADCIRC:

1. Interpolation of baroclinic pressures

2. Automated bathymetry smoothing

3. and 4. Biharmonic operators for viscosity/diffusion

5. Adaptive filtering of velocity solution

These updates were added to the ADCIRC Github repository a few years ago

– But the ‘hooks’ were broken to the rest of the code

– I have debugged over the past year, and now everything seems to be working okay

These updates have helped some recent studies with the baroclinic 3D ADCIRC
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1.1 Summary of Updates
Example of Baroclinic 3D ADCIRC

Sea surface velocities (m/s) predicted during mid-June 2010 due to a baroclinic 3D ADCIRC simulation. The times are: a) 2010/06/13/1300UTC (12.54 days);

b) 2010/06/15/0800UTC (14.33 days); c) 2010/06/17/0800UTC (16.33 days); and d) 2010/06/19/0000UTC (18.00 days).
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1.2 Baroclinic Pressure Gradients
Additional Pressure Forces in Momentum Equations

Changes in temperature and salinity, cause changes in density, cause changes in pressure

– These pressure gradients can drive circulation and transport

These pressure gradients appear as forces in the momentum conservation equations:

– If we are not too picky about the form of the equation, e.g. for the x-direction:
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1.2 Baroclinic Pressure Gradients
Challenges due to Solution on σ Levels

A key challenge is how to compute these baroclinic pressure gradients in 3D

– ADCIRC (and many other models) discretize the water column with σ levels:

– These levels make it challenging to compute horizontal derivatives:
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1.2 Baroclinic Pressure Gradients
Interpolation to Horizontal z Level

A common approach is to evaluate an untransformed horizontal derivative

– Baroclinic pressures are mapped to a constant z level, and then gradients are computed

– We need to minimize any errors in the interpolation

– Very small roundoff errors can accumulate and drive significant circulation
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1.2 Baroclinic Pressure Gradients
Update #1 : Interpolation of Baroclinic Pressures

We made several improvements to the workflow to compute the baroclinic pressures

1. Temperature and salinity are converted to density

ρ = ρ (T , S (, p))

– Previous: Density computed at σ levels
– Now: Density computed at any depth, using cubic interpolation for temperature
and salinity

2. Baroclinic pressures are computed by integrating the density

P =
g

ρ0

∫ ζ

z
(ρ− ρ0) dz

– Previous: Trapezoidal rule in each layer
– Now: 2-point Gauss-Legendre quadrature in each layer
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1.2 Baroclinic Pressure Gradients
Update #1 : Interpolation of Baroclinic Pressures

We made several improvements to the workflow to compute the baroclinic pressures

3. Gradients are computed on horizontal z levels:

bx =
∂P

∂x

– Previous: Linear interpolation of baroclinic pressures
– Now: Cubic interpolation of baroclinic pressures
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1.2 Baroclinic Pressure Gradients
Expectations for Results

Thus, at all stages, we are trying to minimize the roundoff errors as much as possible

– But it is impossible to remove them entirely
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1.2 Baroclinic Pressure Gradients
Synthetic Test : Submerged Ridge
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1.2 Baroclinic Pressure Gradients
Synthetic Test : Seamount
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1.3 Resolution Sensitivity and Bathymetry Smoothing
Results are Sensitive to Horizontal and Vertical Resolution
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1.3 Resolution Sensitivity and Bathymetry Smoothing
Metrics for Resolution

There are common metrics for the mesh resolution

– For the horizontal resolution:

rx0 =
|hi − hj |
hi + hj

where i and j are neighboring vertices

– As ∆x → 0, this metric rx0 → 0 ... horizontal resolution helps!

– For the vertical resolution (Haney number):

rx1 =
|hki − hkj + hk−1

i − hk−1
j |

hki + hkj − hk−1
i − hk−1

j

where k and k − 1 are neighboring layers

– As ∆z → 0, this metric rx1 → ∞ ... vertical resolution may not help on its own!

14



1.3 Resolution Sensitivity and Bathymetry Smoothing
Update #2 : Automated Bathymetry Smoothing

Arash wrote a code to smooth the bathymetry in an ADCIRC mesh to minimize rx0 and rx1
– Loop over all element/layer edges, adjust depths

– Iterate to an acceptable results

This smoothing can be applied selectively:

– In Cyriac (2020), smoothing was applied to all depths larger than 15 m

– In Rumbaugh (2021), smoothing was applied to depths between 0 and 5 m
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Laplacian Operator for Viscosity

In ADCIRC’s momentum equations, another forcing is the lateral stress gradient

– Represented in the equations as:

mx = Eh∇2u my = Eh∇2v

in which Eh is a lateral eddy viscosity

– This Laplacian operator can be over-diffusive, especially in problems with a wide range
of spatial scales

– Need a way to tie the viscosity to the local mesh size
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Update #3 : Biharmonic Operator for Viscosity

Arash implemented a biharmonic operator for the lateral stress gradient

– Given by:
mx = Eh∇2∇2u my = Eh∇2∇2v

in which the eddy viscosity uses a modified Leith formula:

Eh =
L5

8π3

√
Λ6|∇ω|2 + Λ6

d |∇∇ · uh|2, (1)

in which the quantities ∇ω and ∇∇ · uh are functions of the horizontal velocities u and
v , and Λ can be related to the local mesh size L:

Λ = 1.4 +
2.5− 1.4

6000− 100
(L− 100), 1.4 ≤ Λ ≤ 2.5. (2)

– This implementation allows the horizontal eddy viscosity to vary with the local resolution
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Update #4 : Biharmonic Operator for Diffusivity

Similarly, in the transport equation, there is a horizontal diffusion operator

– Given by:
Dh (c ,Nh) = Nh∇2c

in which c is a transported species (S or T ), and Nh is a diffusivity coefficient

– Arash implemented a biharmonic operator:

Dh (c ,Nh) = Nh∇2c

with:
Nh = Eh

– Thus the horizontal diffusion can also vary with the local resolution
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Update #5 : Adaptive Filtering of Velocity Solution

The last update is a new adaptive scheme that filters the velocity field

– Similar to filters in SELFE and MITgcm

Based on a weighted average of the velocities at its neighbor vertices

– Weights are locally adjusted, based on the local velocity field, local grid spacing, and
local viscosity magnitude

– Based on a quantity similar to that of the local element Péclet number

Should be adaptive to flow conditions:

– Minimal when the flow is well-resolved, i.e. in regions with high resolution and low
velocity magnitudes

– Significant when mesh resolution is coarse and velocity field has large magnitudes
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Example of Instability
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1.4 Biharmonic Viscosity/Diffusion and Adaptive Filtering
Improvements to BPGs, Stability

In a project after the Deepwater Horizon oil spill, Arash Fathi updated a few aspects of the
baroclinic 3D ADCIRC:

1. Interpolation of baroclinic pressures

2. Automated bathymetry smoothing

3. and 4. Biharmonic operators for viscosity/diffusion

5. Adaptive filtering of velocity solution

These updates were added to the ADCIRC Github repository a few years ago

– But the ‘hooks’ were broken to the rest of the code

– I have debugged over the past year, and now everything seems to be working okay

These updates have helped some recent studies with the baroclinic 3D ADCIRC
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2.1 Background and Relevant Studies
ADCIRC Studies of Estuarine Circulation

ADCIRC has been applied to understand estuarine circulation due to storms ...

– Sebastian et al. (2014) investigated maximum water levels and behavior of storm surge
for Ike (2008) in Galveston Bay, Texas

– Yin et al. (2017) investigated the effect of sea level rise and typhoon intensification on
storm surge in the Pearl River Estuary, China

... or due to density differences:

– Dresback et al. (2010) applied a coupled model to the Northern Gulf of Mexico

– Cyriac et al. (2020) investigated the tidal, wind, and density-driven circulation at
Choctawhatchee Bay, Florida
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2.1 Background and Relevant Studies
Albemarle and Pamlico Estuarine System (APES)
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2.1 Background and Relevant Studies
Irene (2011) Tracked Over APES and Caused Fish Kills
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2.1 Background and Relevant Studies
Questions, Goal and Objectives

Questions about how estuaries respond to storms:

– How does the density stratification (horizontally and vertically) change during the storm?

– How quickly does it restratify after the event?

Our goal was to understand how salinities and temperatures in the Albemarle-Pamlico
Estuarine System (APES) are disturbed during and recover after a storm

Our objectives were:

– Develop a baroclinic 3D ADCIRC model for circulation and transport in this system

– Apply all forcings to simulate Irene (2011)

– Quantify the storm effects on density distributions
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2.2 Methods
Cut APES From the NC9 Mesh

Trimmed mesh has 60,330 vertices, resolution from 5 km to 50 m
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2.2 Methods
Apply River Fluxes from USGS
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2.2 Methods
Tide and Atmospheric Forcing

We applied tides at the two ocean boundaries:

– Interpolated from the EC2015 tidal database

– Eight leading constituents

We applied atmospheric forcing with a parametric vortex model:

– Generalized Asymmetric Holland model (GAHM)

– Best-track parameters from the NHC

– Covers 0000 UTC August 21 to 0000 UTC August 29
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2.2 Methods
Initial Conditions for Density

ADCIRC needs initial conditions for temperature and density

– Could start from a basic distribution and allow ADCIRC to develop a realistic
stratification

– But APES residence times are on the order of months

– Better to start with something realistic

SalWise

– Database for salinity, temperature, and other water quality parameters

– Developed by Dr. Niels Lindquist (UNC) and Dr. Stephen Fegley (UNC)

– “Development of a Comprehensive North Carolina Salinity Database to Facilitate
Management and Restoration of Critical Fish Habitats”

– Has more than 1,980,000 records

– Dates range from 1945 to 2014
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2.2 Methods
SalWise Data are Limited

However, it is challenging to develop fields from SalWise

– Limited data points and coverage in APES

– August 2011 had 25,580 points at surface, 237 points at bottom

– All Augusts (any year) had 158,665 points at surface, 3,789 points at bottom
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2.2 Methods
Fields for Initial Salinity, Temperature
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2.2 Methods
We Cannot Get Any More Complicated Than This
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2.2 Methods
Simulations and Analysis Zones

Series of simulations to build up to the storm and then examine behavior afterward

Analyze responses of mesohaline, polyhaline, euhaline zones

– Optimal living conditions for blue crabs (polyhaline/euhaline) and oysters
(mesohaline/polyhaline/euhaline)
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2.3 Results
Evolution of Surface Salinities near Roanoke Island
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2.4 Takeaways
Significant Transport of Saline and Fresh Waters

The main findings from this study were:

– In the eastern Albemarle Sound, surface salinities can increase by as much as three zones

– Most of Pamlico Sound stayed within the polyhaline zone throughout Irene

– Waters near Roanoke Island saw the largest changes in salinity

– The Neuse and Tar-Pamlico Rivers experienced saline intrusions during the storm and
fresh extrusions after the storm.

– Potential for long-duration freshwater intrusions, detrimental to ecosystem
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Conclusions and Future Work

Updates to baroclinic 3D ADCIRC:

– Improvements to baroclinic pressure gradients, bathymetry smoothing,
viscosity/diffusion operators, and velocity filtering

– Additions have been debugged in a recent ADCIRC version

Storm effects on density stratification in NC estuaries:

– Developed a baroclinic 3D ADCIRC model for Irene (2011) in APES

– Quantified intrusions of brackish and saline waters into Albemarle Sound during the
storm, fresh waters past Roanoke Island after the storm

Future work:

– Publish code changes and examples/documentation

– Get these papers out!
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