Deterministic, dynamic model forecasts of storm-driven erosion

Jessica Gorski¹, Casey Dietrich¹, Rick Luettich², Matthew Bilskie³, Davina Passeri⁴, RC Mickey⁴

Beach/Dune Erosion impacts Infrastructure

- More frequent, high-intensity storms
- Significant storm-driven erosion leaves coastal communities more vulnerable

Bonita Beach, FL Post Hurricane Ian

- Dune height: ~ 2m
- Max WL: ~1.4 m
- Max Hs: ~5.5 m

[LUIS SANTANA | Tampa Bay Times]

NC STATE

UNIVERSITY

Sallenger (2000) Impact Regimes

Collision regime

 $D_{\rm low} < R_{\rm high} \ll D_{\rm high}$

Sallenger (2000) Impact Regimes

Sallenger (2000) Impact Regimes

Erosion Forecasts with Impact Regimes

USGS Coastal Change Hazards Portal

- Uses Sallenger (2000) impact regimes
- Based on probabilistic surge forecast (psurge) generated by NOAA
- Static prediction of storm impact

NC STATE

UNIVERSITY

Erosion Modeling with XBeach

eXtreme Beach (XBeach)

- Morphological model for storm-driven erosion
- 1D or 2D options
- High resolution, dynamic results
- Typically used in hindcast scenarios
 - Data availability limitations
 - Computational expensive
 - Can take hours

XBeach-Deltares

Can **1D XBeach** be used in real time?

• Harley, M. et al (2011) did this with an 8 km stretch of coast in Northern Italy

We are attempting to represent over 4000 km of the U.S. East and Gulf Coast

Use the morphological model XBeach to forecast storm-driven erosion along the U.S. East and Gulf Coast prior to landfall

- 1. How can we evaluate the predictive accuracy of the model?
- 2. How do our predictions improve as a storm makes landfall?
- 3. When during the storm is the dune impacted?

NC STATE UNIVERSITY

Forecasts with 1D XBeach

Examples of Forecast Guidance

AIN

NA

The

Havana

namas

← 1560	<
т	KENTUCKY VIRGI
1560	
lon	CAROL
-81.86	Atlanta SOUTH
lat	ALABAMA OFODOLA
26.36	GEORGIA
Regime	Jack 9 jille
Inundation/Overwash	
Link	Orla
https://github.com/jessgorski/NOPP-	Tan
NCSU-Website/blob/main/IAN_9-27-	
12/T1560_results.png	
	o Ba

Hurricane Ian

- Low-end cost estimate: \$ 28 Billion
- Track originally estimated to make landfall in Tampa
 Shifted south, made landfall in Fort Myers, moved into Atlantic, made another landfall north of Charleston
 Adv 15 (~3 days before landfall) vs Adv 23 (~1 days before landfall)

1. How can we evaluate predictive accuracy?

Qualitative

- USGS Coastal Change Viewer
- Aerial photos
 - 87% success rate

Quantitative

- Looking for post-storm LiDAR
 - Compare pre- and post-storm transect elevation data

2. How do forecasts improve as a storm makes landfall? **NC STATE** UNIVERSITY

3. When during the storm is the dune impacted?

Conclusion

- 1. How can we evaluate the predictive accuracy of the model?
 - a. Approximately 87% predictive success rate
 - b. Looking for post-lan elevation data for quantitative evaluation
- 2. How do our predictions improve as a storm makes landfall?
 - a. Impact predictions improve from 72% on 9-26 to 87% on 9-27
- 3. When during the storm is the dune impacted?
 - a. Dynamic erosion models show storm progression

Citations

Slide 2:

https://www.tampabay.com/hurricane/2022/09/30/friday-live-updates-florida-recovers-hurricane-ian-targets-carolinas/

Slide 3: Goslin J, Clemmensen LB. 2017. Proxy records of Holocene storm events in coastal barrier systems: stormwave induced markers. Quat. Sci. Rev. 174

Slide 4: <u>https://marine.usgs.gov/coastalchangehazardsportal/</u>

Slide 5: https://www.deltares.nl/en/software/xbeach/

Harley, M., Armaroli, C. and Ciavola, P., 2011. Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. Journal of Coastal Research, SI 64 (Proceedings of the 11th International Coastal Symposium), – . Szczecin, Poland, ISSN 0749-0208

Slide 8: NOPP slides made by Rick Luettich and Matt Bilskie

Slide 11: https://cera.coastalrisk.live/

https://www.cnn.com/2022/09/30/business/hurricane-ian-cost