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2019 nourishment ($32m) 
Hit by Hurricane Dorian in 2019
Requiring 2022 repairs ($14m)

Two recent beach nourishments in Nags Head, NC, USA

2011 Nourishment ($32m) 
Hit by Hurricane Matthew in 2016.



Increased use of soft coastal defenses
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New investments and 
maintenance of old 
nourishments found 
throughout Atlantic and 
Gulf coasts

Elko et al. (2021)
ASBPA (2022)
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Hurricanes paths/characteristics are a stochastic process 

Hurricane Climatology
2021 Atlantic Hurricane Season

2021 Hurricane Season

NOAA (2022)

NOAA (2022)
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2021 Atlantic Hurricane Season

Hurricanes paths/characteristics are a stochastic process 

Hurricane Climatology ~50 years of hurricane tracks

NOAA (2022)

IBTrACS (2021)
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Our predominant form of coastal protection is dependent on 
the randomness of storm events…

But we have only seen one roll of the weather dice…

● What is the range of likely storm 
chronologies? 

● How does that variability translate to 
nourishment lifespans? 

● Is it relevant to management decisions?

● Will future sea levels and storminess 
affect those lifespans?
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Goal: Build an efficient framework to assess 
nourishment lifespan variability.

● Need to be able to generate synthetic 
chronologies of storm events. 

● Need to be able to erode an engineered 
nourishment profile with fidelity.

● Need to be able to generate many 
realizations to quantify variability.
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1. Generating synthetic chronologies of storm events. 

Using a stochastic weather generator known as TESLA-flood: 
Anderson et al. (2019) Time-varying Emulator for Short and Long-term Analysis of coastal flood hazard potential. JGR:Oceans, 
124(12), 10.1029/2019JC015312
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Assumption: similar weather patterns will generate similar environmental conditions
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Idea: connect climate drivers to chronological behavior
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Atlantic Multidecadal Oscillation

NOAA Extended Reconstructed SST V5 (2021), NOAA NCEP MJO Index (2021), Climate Forecast System Reanalysis (2021)
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Methods: Weather Typing - identifies common spatial patterns

Camus et al. (2011, 2014), Cagigal et al. (2021)

70 DWTs
1. K-means Clustering of all daily Sea Level Pressure 

patterns between 1979-2021.
a. Tropical Weather vs. Extra-Tropical Weather

2. Isolate wave hydrographs to create unique 
distributions for each DWT.

DWT5 DWT8 DWT8 DWT8 DWT4 DWT4 DWT4 DWT4 DWT1

Hs Tp

Ss
time

Climate Forecast System Reanalysis (2021)
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Methods: Seasonality captures intra-annual variability

Stacked probability of occurrence on 
each calendar day
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Methods: Auto-logistic Regression

Guanche et al. (2013), Antolinez et al. (2017), Anderson et al. (2019)

Can make new weather pattern chronologies 
contingent on the large-scale climate indicators

Historical Weather
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Methods: Create wave “hydrographs” from historical record

DWT5 DWT8 DWT8 DWT8 DWT4 DWT4 DWT4 DWT4 DWT1

Hs Tp

Ss
time

H
s 

(m
)

Created a unique subset of normalized hydrographs for each DWT

12
Cagigal et al. (2021) Wave Information Studies Hindcast (2021)
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Randomly sample a max Hs, Tp, SS and scale a random hydrograph to 
create synthetic hourly time series of storm parameters.

12
Cagigal et al. (2021)
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Library of Xbeach simulations

Surrogate 
Model 
(Gaussian 
Process 

Regression)

Gharagozlou et al. (submitted) Emulator for Nourished Beach Scarping due to Storms

Surrogate Modeling: Statistical model that learns how to predict like 
a deterministic model using machine learning tools

2. Need to understand how engineered beaches respond to storm. 



2. Predicting nourishment responses to synthetic waves 
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● 16 surveys of Nags Head evolution 
between 2010-2019

Envelope of all profiles 
(white = mean)

Mean water line

Nourishments
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Methods: Efficient prediction of erosion from a hypothetical storm

● Created 1250 synthetic storms using 
Wahl et al. (2016)

● Reduced dimensionality of the beach 
profile using EOF magnitudes.

● Predicted the scarp feature as 
defined by an exponential curve.

Gharagozlou et al. (submitted) Emulator for Nourished Beach Scarping due to Storms
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Methods: Assuming recovery between each storm is a 
function of non-dimensional fall velocity

● Any “storm” of >2m for >12 hours 
is evolved with the surrogate

● All other hours the EOF1 
magnitude is adjusted by the 
non-dimensional fall velocity.
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Results: Applying the surrogate model to synthetic storm time 
series produces many realizations of nourishment evolution
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Results: Applying the surrogate model to synthetic storm time 
series produces many realizations of nourishment evolution
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Simulated 5000 years of nourishment evolution: Can quantify 
the range of life spans that a community may experience



Simulated the exact same storms with 20 cm of SLR: begin to 
understand the effect of slightly higher sea levels
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● Statistically significant 
different populations 
according to t-test

● Randomness of storm 
variability will remain the 
dominant determinant of 
nourishment lifespans during 
the next ~20 cm of SLR
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Created a framework to generate synthetic observations of 
nourishment life cycles contingent on storm chronologies.

● Developed stochastic storm 
climates for the Outer Banks, NC

● Developed a surrogate model to 
efficiently evolve the cross-shore 
profile of nourishment at any stage 
in its life cycle

● Initial results suggest that the 
randomness of storm variability 
will remain the dominant 
determinant of nourishment 
lifespans during the next ~20 cm 
of SLR

H
s 

(m
)



QUESTIONS SLIDE
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Created a framework to generate synthetic observations of 
nourishment life cycles contingent on storm chronologies.

Dylan Anderson (danders5@ncsu.edu)
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