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Two recent beach nourishments in Nags Head, NC, USA

2011 Nourishment ($32m) 37004
Hit by Hurricane Matthew in 2016. -

36.50 -

2019 nourishment ($32m) %25 -
Hit by Hurricane Dorian in 2019
Requiring 2022 repairs ($14m)

2aches of Nags Head
following the 2011
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Head 2019




Increased use of soft coastal defenses

New investments and U.S. Beach Nourishment Volume by Decade: 1921-2020
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Fig. 6. U.S. beach nourishment volume by decade, fit to an exponential trend line with an R-squared value of 0.98.
Elko et al. (2021)
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Hurricanes paths/characteristics are a stochastic process

2021 Hurricane Season
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Hurricanes paths/characteristics are a stochastic process

Hurricane Climatology
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~50 years of hurricane tracks
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Our predominant form of coastal protection is dependent on
the randomness of storm events...

But we have only seen one roll of the weather dice...
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Goal: Build an efficient framework to assess

nourishment lifespan variability.
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1. Generating synthetic chronologies of storm events.

Using a stochastic weather generator known as TESLA-flood:

Anderson et al. (2019) Time-varying Emulator for Short and Long-term Analysis of coastal flood hazard potential. JGR:Oceans,
124(12), 10.1029/2019JC015312

Assumption: similar weather patterns will generate similar environmental conditions
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1. Generating synthetic chronologies of storm events.

Using a stochastic weather generator known as TESLA-flood:

Anderson et al. (2019) Time-varying Emulator for Short and Long-term Analysis of coastal flood hazard potential. JGR:Oceans,
124(12), 10.1029/2019JC015312

Assumption: similar weather patterns will generate similar environmental conditions
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Madden-Julian Oscillation

Idea: connect climate drivers to chronological behavior
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NOAA Extended Reconstructed SST V5 (2021), NOAA NCEP MJO Index (2021), Climate Forecast System Reanalysis (2021)



Methods: Weather Typing - identifies common spatial patterns

1.  K-means Clustering of all daily Sea Level Pressure
patterns between 1979-2021.
a. Tropical Weather vs. Extra-Tropical Weather

2. Isolate wave hydrographs to create unique
distributions for each DWT.

DWT5 DWT8 DWT8 DWT8 DWT4 DWT4 DWT4 DWT4 DWT1
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Camus et al. (2011, 2014), Cagigal et al. (2021) Climate Forecast System Reanalysis (2021)



Methods: Weather Typing - identifies common spatial patterns

70 DWTs
1. K-means Clustering of all daily Sea Level Pressure Sﬁﬁ%i&ﬁ
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Camus et al. (2011, 2014), Cagigal et al. (2021) Climate Forecast System Reanalysis (2021)
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Methods: Seasonality captures intra-annual variability

Stacked probability of occurrence on
each calendar day
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Methods: Auto-logistic Regression

Can make new weather pattern chronologies
contingent on the large-scale climate indicators

Historical Weather

Probability
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Guanche et al. (2013), Antolinez et al. (2017), Anderson et al. (2019)

%i i NN,
;&ﬂ.ﬁ&&
PRGNS,

2 R R
@&&ﬂﬂﬁﬁ




Methods: Auto-logistic Regression

Can make new weather pattern chronologies
contingent on the large-scale climate indicators

Simulated Weather
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Methods: Auto-logistic Regression

Can make new weather pattern chronologies
contingent on the large-scale climate indicators

Simulated Weather

Probability
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Methods: Create wave “hydrographs” from historical record

Created a unique subset of normalized hydrographs for each DWT

DWT5 DWT8 DWT8 DWT8 DWT4 DWT4 DWT4 DWT4 DWT1

Hs (m)

1980 1985 1990 1995 2000 2005 2010 2015 2020
12

Cagigal et al. (2021) Wave Information Studies Hindcast (2021)
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Methods: Create wave “hydrographs” from historical record

Randomly sample a max Hs, Tp, SS and scale a random hydrograph to
create synthetic hourly time series of storm parameters.

DWT5 DWT8 DWT8 DWT8 DWT4 DWT4 DWT4 DWT4 DWT1

Cagigal et al. (2021)
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Methods: Create wave “hydrographs” from historical record

Randomly sample a max Hs, Tp, SS and scale a random hydrograph to
create synthetic hourly time series of storm parameters.
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2. Need to understand how engineered beaches respond to storm.

Surrogate Modeling: Statistical model that learns how to predict like
a deterministic model using machine learning tools

+ New Storm
(Hs, Tp, Surge, ...)
+ Storm 1 E : |

(Hs, Tp, Surge, ...)

Surrogate
+ Storm 2 / Mod .9|
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Process
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14 Library of Xbeach simulations

Gharagozlou et al. (submitted) Emulator for Nourished Beach Scarping due to Storms



2. Predicting nourishment responses to synthetic waves

e 16 surveys of Nags Head evolution
between 2010-2019
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Methods: Efficient prediction of erosion from a hypothetical storm

elevation (m)
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Gharagozlou et al. (submitted) Emulator for Nourished Beach Scarping due to Storms

Created 1250 synthetic storms using
Wahl et al. (2016)

Reduced dimensionality of the beach
profile using EOF magnitudes.
Predicted the scarp feature as
defined by an exponential curve.




Methods: Assuming recovery between each storm is a
function of non-dimensional fall velocity

e Any “storm” of >2m for >12 hours
is evolved with the surrogate

e All other hours the EOF1

magnitude is adjusted by the
non-dimensional fall velocity.
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Results: Applying the surrogate model to synthetic storm time

series produces many realizations of nourishment evolution
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Results: Applying the surrogate model to synthetic storm time

series produces many realizations of nourishment evolution
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Results: Applying the surrogate model to synthetic storm time
series produces many realizations of nourishment evolution
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Simulated 5000 years of nourishment evolution: Can quantify
the range of life spans that a community may experience
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Simulated the exact same storms with 20 cm of SLR: begin to

understand the effect of slightly higher sea levels

e Statistically significant
different populations
according to t-test

e Randomness of storm
variability will remain the
dominant determinant of
nourishment lifespans during
the next ~20 cm of SLR
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Created a framework to generate synthetic observations of
nourishment life cycles contingent on storm chronologies.

e Developed stochastic storm
climates for the Outer Banks, NC

e Developed a surrogate model to
efficiently evolve the cross-shore
profile of nourishment at any stage
in its life cycle

e |Initial results suggest that the
randomness of storm variability
will remain the dominant
determinant of nourishment
lifespans during the next ~20 cm
of SLR
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Created a framework to generate synthetic observations of
nourishment life cycles contingent on storm chronologies.
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