Subgrid Corrections in Finite-Element Models of Storm-Driven Coastal Flooding

JL Woodruff¹, JC Dietrich¹, D Wirasaet², AB Kennedy², D Bolster², Z Silver², SD Medlin³, RL Kolar⁴

¹Dep't of Civil, Construction, and Environmental Engineering, NC State Univ
 ²Dep't of Civil and Environmental Engineering and Earth Sciences, Univ Notre Dame
 ³School of Environmental, Civil, Agricultural, and Mechanical Engineering, Univ Georgia
 ⁴School of Civil Engineering and Environmental Science, Univ Oklahoma

16th U.S. National Congress on Computational Mechanics Minisymposium 418, Online Meeting, 27 July 2021

1. Motivation


Loss of Information at Model Scale

Lake Calcasieu, LA High-resolution DEM with bathy/topo for Bayou Contraband

Typical finiteelement mesh for coastal flood forecasting

Bathy/topo aliased to mesh scale

1. Motivation
Use Smaller-Scale Information to 'Correct' Flows

Subgrid Corrections

Subgrid corrections use information at smaller scales to 'correct' flow variables (water levels, current velocities) at the model scale

Selected applications to shallow water flows:

- Defina (2000) corrected advection and partially wet cells
 - \rightarrow Able to coarsen by factor of 32
- Casulli (2009) and Casulli and Stelling (2011) also corrected partially wet cells
 - ightarrow Used lookup tables created from high-resolution elevation data
- Volp (2013) corrected bottom stress
 - ightarrow Improved discharge and water surface slope relative to high-resolution counterparts

Able to coarsen the model resolution and still represent small-scale flow pathways and barriers

ightarrow Higher accuracy at same resolution, higher efficiency at coarser resolution

Averaged Variables

Shallow water equations are averaged to the model scale, e.g. Kennedy et al. (2019)

A given flow variable Q can be averaged:

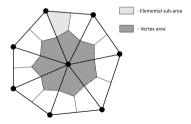
– To the grid/mesh scale:

$$\langle Q \rangle_G \equiv rac{1}{A_G} \iint_{A_W} Q \; \mathrm{d}A$$

– To only the wet part of the grid/mesh scale:

$$\langle Q \rangle_W \equiv rac{1}{A_W} \iint_{A_W} Q \; \mathrm{d}A$$

– Where the areas are related by:


$$A_W = \phi A_G$$

Implementation in ADCIRC

We implemented the subgrid corrections in ADvanced CIRCulation (ADCIRC)

- Widely used for predictions of coastal circulation, storm surge and flooding during storms
- Solves modified forms of the shallow-water equations by using the continuous-Galerkin, finite-element method on unstructured meshes

This required a careful definition of vertex- and element-based averaging areas:

Averaged Governing Equations for ADCIRC

For this study, its governing equations were averaged to the mesh scale

- Example of momentum conservation in x-direction:

$$\begin{split} \frac{\partial \langle UH \rangle_{G}}{\partial t} &+ \frac{\partial C_{UU} \langle U \rangle \langle UH \rangle_{G}}{\partial x} + \frac{\partial C_{VU} \langle V \rangle \langle UH \rangle_{G}}{\partial y} - f \langle VH \rangle_{G} \\ &= -g C_{\zeta} \langle H \rangle_{G} \frac{\partial \langle \zeta \rangle_{W}}{\partial x} - g \langle H \rangle_{G} \frac{\partial P_{A}}{\partial x} + \phi \langle \frac{\tau_{sx}}{\rho_{0}} \rangle_{W} \\ &- C_{M,f} \frac{|\langle U \rangle| \langle UH \rangle_{G}}{\langle H \rangle_{W}} + \frac{\partial}{\partial x} \tilde{E}_{h} \frac{\partial \langle UH \rangle_{G}}{\partial x} + \frac{\partial}{\partial y} \tilde{E}_{h} \frac{\partial \langle UH \rangle_{G}}{\partial y} \end{split}$$

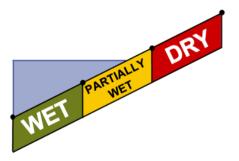
in which the red coefficients are new closure terms

- Similarly for momentum conservation in y-direction, mass conservation

Closures

We used a so-called 'Level 0' closure:

	Traditional	Level 0
Wet/dry	$\phi=$ 0 or 1	$\phi = A_W/A_G$
Advection	$C_{UU}=C_{VU}=C_{UV}=C_{VV}=1$	$C_{UU}=C_{VU}=C_{UV}=C_{VV}=1$
Friction	$C_{M,f} = C_f = g n^2 / H^{1/3}$	$C_{M,f} = \langle C_f angle_G$
Surface gradient	$C_{\zeta}=1$	$C_{\zeta}=1$

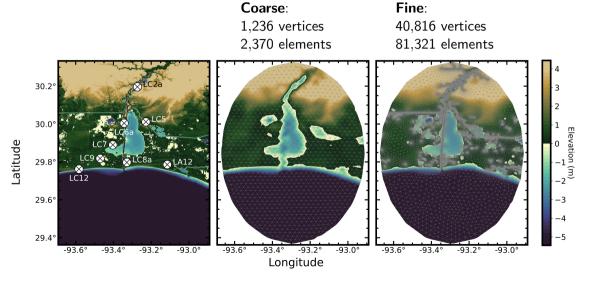

Note the differences for the wet/dry status and friction term

→ Higher-level closures will be explored in future work

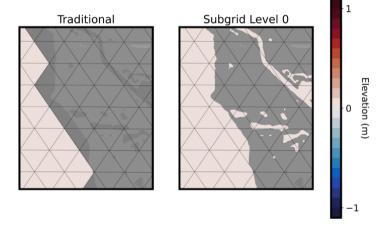
Partially Wet Cells/Elements

This allows for partially wet cells/elements

ightarrow Better connectivity through small-scale flow pathways

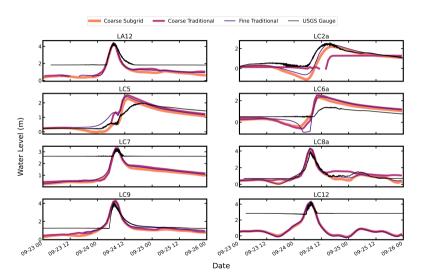


This required a major revision to ADCIRC's wet/dry algorithm


→ Removed extensive logic to compare water levels, velocities between vertices

3. Results

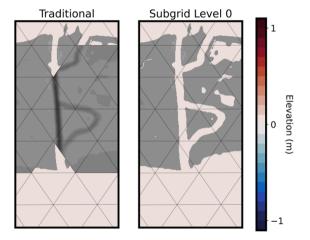
Meshes and Station Locations



3. Results Improvements at Wet/Dry Interface

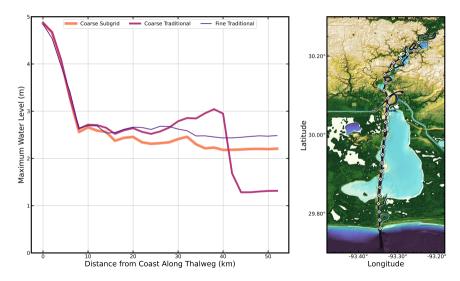
3. Results

Tides and Storm Surge at Stations



3. Results
Accuracy at Stations

Differences (m) in peak water levels at observation stations


	Coarse Subgrid	Coarse Traditional	Fine Traditional
LA12	0.065	0.028	0.060
LC2a	0.423	1.328	0.152
LC5	0.281	0.538	0.435
LC6a	0.898	1.095	0.940
LC7	0.006	0.048	0.002
LC8a	0.312	0.327	0.412
LC9	0.180	0.192	0.155
LC12	0.202	0.182	0.206

3. Results Improvements for Channel Connectivity

3. Results

Maximum Water Levels along Main Channel

3. Results Efficiency

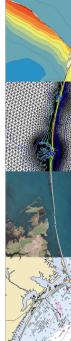
Wall-clock times (sec) for three test cases

- All tests run in serial on same hardware

	Coarse Subgrid	Coarse Traditional	Fine Traditional
Winding Channel	107	62	5,787
Buttermilk Bay	508	277	4,176
Calcasieu Lake	5,248	3,728	167,514

Subgrid ADCIRC is slightly slower on the same mesh

ightarrow But it gives comparable results to a mesh that is 33 times coarser


4. Conclusions and Future Work Subgrid ADCIRC

The main contributions of this study are:

- 1. Subgrid corrections were added to ADCIRC
 - ightarrow First application with hurricane-strength forcing
- 2. Increases in accuracy and hydraulic connectivity on coarsened meshes
 - \rightarrow Peak surge within 0.5 m at top of Bayou Contraband
- 3. Efficiency gains on coarsened meshes
 - \rightarrow Speed-ups by factors of 30+

Ongoing efforts are focused on:

- Implementing higher-level corrections for friction and advection
- Scaling the subgrid ADCIRC to storm simulation on large domains

4. Conclusions and Future Work Upcoming Manuscript in *Ocean Modelling*

Subgrid Corrections in Finite-Element Modelling of Storm-Driven Coastal Flooding

Johnathan L. Woodruff^{a,1}, JC Dietrich^a, D Wirasaet^b, AB Kennedy^b, D Bolster^b, Z Silver^b, SD Medlin^a, RL Kolar^c

^aDepartment of Civil, Construction, and Environmental Engineering, North Carolina State University, 293 Ustneon Prive, Raleigh, North Carolina, 27607
^bDepartment of Civil and Environmental Engineering and Earth Science, University of Notre Dame, South Bend, Indiana, 46556
^cSchool of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, 27919

Abstract

Coastal flooding models are used to predict the timing and magnitude of inundation during storms, both for real-time forecasting and long-term design. However, there is a need for faster flooding predictions that also