Coupling of Deterministic and Probabilistic Models for Prediction of Storm-Driven Erosion on Barrier Islands

Ph.D. Defense

July 28, 2021

Alireza Gharagozlou

Department of Civil, Construction and Environmental Engineering

North Carolina State University

USCRP

Acknowledgements

1

Thesis Committee:

Dr. Casey Dietrich¹

Dr. Rafael Canizares² Dr. Helena Mitasova³

Dr. Alejandra Ortiz⁴ Dr. Margery Overton¹

Other Collaborator:

Dr. Dylan Anderson¹, Jessica Gorski¹, Tucker Fulle¹

¹Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

² FEMA, New York, NY

³ Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC

⁴ Department of Geology, Colby College, Waterville, ME

2

About Me

I was born in Hamedan, Iran.

Got my B.S. In Civil Engineering at Bu-Ali Sina University.

Earned my M.S. in Civil Engineering with the focus on Coastal Engineering at University of Tehran.

Traveled 6500 miles to pursue my Ph.D.!

Outline

3

- Introduction
- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

Outline

3

• Introduction

- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

Storm Impacts

4

lrene (2011), NC

Arthur (2014), NC

Intro.

- Introduction
- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

Improve our understanding of:

- Erosion, overwash, and breaching due to storm
- Their contribution to flooding
- Storm impacts on sustainability of nourished beaches

Research Question:

How do individual erosion events contribute to large-scale coastal hazards?

Literature Review

7

How do individual erosion events contribute to large-scale coastal hazards?

McCall et al. [2010], De-Vet [2014], Kurum and Overton [2013],

- Storm surge estimation
- Modeled the overwash and dune erosion
- Land cover effects on breaching

Findings:

- Storm impacts on erosion
- Prediction of erosion is accurate
- Relationship between geomorphology, storm intensity and flooding

Missing gaps:

- Didn't include large-scale impacts
- Breaching contribution to flooding was not considered
- Successive storms' impacts were not considered

Literature Review

8

How do individual erosion events contribute to large-scale coastal hazards?

Canizares and Irish [2008]

- Storm-driven erosion and breach
- Coupling ADCIRC, Delft3D, and Sbeach

Findings:

- Beaching can cause flooding
- Suitable for simulating sediment overwash processes once the barrier island is fully inundated

Missing gaps:

- Temporal evolution of the breach are not fully implemented
- Successive storm impacts are not considered

Depth (m M	SL)			
□<-3.0	□ <- 1.0	□<1.0	■ <3.0	■<5.0
<-2.0	0.0>	<2.0	<4.0	> 5.0

Literature Review

How do individual erosion events contribute to large-scale coastal hazards?

[Plant et al., 2014], [Santos et al., 2019]

Intro.

- Shoreline change
- Coastal erosion due to synthetic storms
- Combination of probabilistic and deterministic models
- Based on 100 synthetic storms

Findings:

- Potential of probabilistic models
- Efficiency in predictions

Missing gaps:

- Did not evaluate multiple storms impacts
- Not reliable for a different beach bathymetry

Outline

- Introduction
- Motivation and Background

• Objectives

- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

Objectives

10

How do individual erosion events contribute to large-scale coastal hazards?

There are missing gaps in our understanding of:

- Morphodynamics of erosion and breaching on large-scale.
- Contributing factors to breaching on the barrier island.
- Contribution of erosion and beaching to flooding in nearby coastal communities.
- Response of nourished beaches to successive storm events

Objectives:

- 1. Evaluate beach and dune erosion and flooding over a barrier island
- 2. Evaluate breaching and flooding into a back lagoon
- 3. Evaluate nourishment performance for multiple storms

Outline

- Introduction
- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

- 1. Evaluate beach and dune erosion and flooding over a barrier island
 - Model erosion and overwash on a large domain
 - Implement a loose coupling of deterministic models
 - Evaluate the improvement in flooding predictions

Modeling Tools

12

ADCIRC+SWAN

XBeach

• Survey width: 250-300 m

Intro.

- High resolution LiDAR: 2m
- Covering large extent
- Erosion, overwash, and breaching
- Pre- and post-storm data:
 16 Sep 21 Sep 2003

Study Area

Computational grid:

- 30 km domain
- Alongshore: 15 m
- Cross shore: 3-35 m

Topo/Bathy data:

- Pre-storm LiDAR
- NC floodplain mapping DEM

Model setup:

- Simple model with minimal tuning
- To expand to other regions
- Waves and water levels from ADCIRC+SWAN

XBeach Prediction Intro.

- 2. Evaluate breaching and flooding into a back lagoon
 - Model breaching and channel formation
 - Evaluate the parameters that cause breaching
 - Implement a two-way coupling of deterministic models
 - Evaluate the contribution of breaching to large-scale flooding

Isabel Inlet

- Three channels
- Total width of 520 m
- Maximum depth of 6 m
- Closed by USACE

Observed Data

Intro. Motivation & Objectives

Summary

XBeach Results

Intro.	Motivation & Background	Objectives	Deterministic Models	Surrogate Model	Summary	NC STATE UNIVERSITY	20
						-	

- XBeach is limited. Some processes are missing
- Sub-surface layers can change the results
- The water level has an important role

Elevation is updated using Time-Varying Bathymetry module in ADCIRC

- 1. Static (No change in bathymetry)
- 2. Dynamic (using XBeach results)
 - Update elevation from hourly outputs of XBeach

Coupling Results

Summary

1. XBeach performance:

• Erosion and overwash predictions match the observation

2. Modeling Breaching:

- Flow from the sound to the ocean has an important role in deepening the breached channels
- XBeach does not include all the physics
- The information about sub-surface layers in the model can improve the results

3. Coupled models:

- Breaching of the barrier island has significant large-scale impacts on the hydrodynamics
- These impacts extend 10 13 km in the sound

Outline

- Introduction
- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

- 3. Evaluate nourishment performance for multiple storms
 - Combine deterministic and probabilistic models to develop a surrogate model
 - Include both the storm and bathymetry variation in the model training
 - Model the erosion of a nourished beach due to multiple storms
 - Quantify surrogate model errors and efficiency

Deterministic models:

- Computationally expensive
- Not suitable for a several storms
- Do not consider uncertainty in futuristic scenarios

Probabilistic models:

- Based on a database of predictions
- Consider a larger number of scenarios
- Improve the computational time

27

- Include the uncertainty in inputs
- Improve computational time for scenario-based predictions
- Previous studies did not include the variation in beach profiles.
- They only included the storm variables.

Our goal:

Not just a surrogate for storm parameters To beach/dune response parameters

But storm + initial beach/dune parameters To beach/dune response parameters

Surrogate model Intro. Motivation & Objectives Deterministic Models Surrogate Model Summary NC STATE UNIVERSITY 29

Surrogate model:

Probabilistic model that learns how to predict like a deterministic model using machine learning tools

Study Area

More than 15 surveys between 2010 & 2019

Beach nourishment in 2011 & 2019

More than 40 years of storm observation data

Motivation & Objectives

Intro.

Summary

33

1000000 synthetic storms

1250 most dissimilar storms

1000000 synthetic storms

1250 most dissimilar storms

33

Surrogate Model Training

2019 Storms

Application to realistic scenario:

- 4 storms in 2019
- Between August and November
- Predictions matches XBeach and Observation
- Under-predicted the erosion in the south
- Took only 20 seconds to run

Model Errors

38

1. Surrogate model development:

- The bathymetry variation was included, therefore the model can be used for any beach state
- The model can be used for studying multiple storm impacts

2. Accuracy:

- Predictions match the observation and the RMS error in erosion volume is 19.5 m³/m
- The main portion of this error comes from XBeach model (18.7 m³/m)
- The model under-estimates the erosion when significant erosion occur.

3. Efficiency:

• The model can produce results within a few seconds while it takes more than 40 hours for XBeach

Outline

- Introduction
- Motivation and Background
- Objectives
- Coupling Deterministic Models
- Developing Surrogate Model
- Summary and Conclusion

Summary

- 1. Evaluate beach and dune erosion and flooding over a barrier island
 - Successfully predicted the overwash and dune erosion on a very large domain
 - Loose coupling show improvement in the flooding prediction
- 2. Evaluate breaching and flooding into a back lagoon
 - Water level on the sound deepens the channels
 - XBeach need to include more physics to model the breach
 - Further model setup can improve the predictions
 - Two-way coupling showed that morphodynamics have significant large-scale impacts on flooding
- 3. Evaluate nourishment performance for multiple storms
 - Surrogate model is an efficient and accurate tool to predict multiple storm impacts on the nourished beaches
 - · Including the bathymetry variation allows the model to be applied to any beach state
 - The main errors in the model derive from deterministic predictions
 - The scarp parameterization needs further improvement to capture extensive erosion

Future work

Erosion and breaching:

- Recalibrating XBeach
- Adding more physics to the model
- Adding land-cover, vegetation, sub-surface layers

Surrogate model:

- Reduce the number of scenarios
- Rework the scarp parameterization
- Recalibrating XBeach model

V

THANK YOU