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Introduction

 Introduction to storm surge

— What is storm surge?

— Why do we care about storm surge?
* Introduction to storm surge modeling

— What are storm surge models?

— How do they work?

— Why do we need them?
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What is storm surge?

NORMAL HIGH TIDE

mean sea level

12 HOURS BEFORE PEAK SURGE
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Storm surge floodingin New Jersey by Hurricane Sandy 2012

Credit: U.S. Air Force photo by Master Sgt. Mark C. Olsen

CYCLONE STORM SURGE

Credit: Australian Bureau of Meteorology 4
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Storm surge modeling

Please always check with your regional National Weather Service for the official forecast.
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How do we get useful model predictions

(/C’!ar\eslnr\ Bluffton,

Savapnalt
o
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1500 km

|
Yacksonville

§ybee Island

Credit: Google 2021
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How do we get useful model predictions

High Resolution Low Resolution Balance

B Accuracy M Efficiency
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High resolution
bathymetry

of the Bayou
Contraband and
Northern
Calcasieu Lake, LA

Calcasieu Lake, LA

| NOMAD meshvle MSL
| (HsoFs)

This meshis used in
real-time
forecasting by
NOAA and the
ADCIRC Prediction
System (APS).

Interpolated
bathymetry of
the mesh

10
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Subgrid Corrections

Pond

50-100 m

* Include: small scale
channels, ponds, marsh
grasses, and roadways

idal Channel

10 m I

Marsh Grass

11
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Goals

* The goal of this work is to introduce subgrid corrections
into the widely used, high-scalable ADvanced
CIRCulation (ADCIRC) model.

« Doing this will allow for accurate water level prediction
on coarsened numerical meshes, thereby increasing the
efficiency of the model.

« This will be useful not only for storm surge forecasting,
but also design studies.

12
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Literature Review

« Defina (2000) used watersurtaco iy eross section
subgrid corrections to i
advection and partially bottom
wet areas to account for ™

changes in flow through ’

very irregular domains. ooz
» Found comparable Lt L e ey e

results on grids ~32 x elementary area. A(x.y)

coarser.

13
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Literature Review

» Casulli (2009) and Casulliand
Stelling (2011) made
corrections to partially wet
computational cells with the
use of lookup tables created
from high-resolution elevation

data.
Grid size (m) Np Ng CPU time (s)
25 671030 1361331 6526
50 172392 352983 1082
100 45057 93361 123

300 5627 11959 16
14
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Literature Review

400

* Volp (2013) sought to resolve 350
issues with bottom friction by 300
applying subgrid correctionsto =250
bottom stress. £ 200

« The addition of a friction w4
correction improved discharge
and water surface slope when
coarsened model results were
compared to high-resolution
counterparts.

-Flow directioh

0 100 200 300
x-axis [m] 15

z-axis [m]
AN o
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Literature Rewew

1
« Kennedy et al. (2019)

formalized all of this work and

introduced additional subgrid

corrections to the governing E—————

equations. g 1
» Subgrid corrections -

significantly improved model

accuracy and efficiency

« There is still work to be done to -
develop proper corrections for ' t
complex scenarios.

| €
*E
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Literature Review

« Limitations of the previous work include:
— Relatively small domains
— Simplistic tidal forcing or relatively minor storm forcing

— Incorporation of corrections into non-scalable
numerical models

17
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1.

Hypotheses

If subgrid corrections are applied to partially wet
elements in ADCIRC, then flow behavior at the smallest
scales can be better resolved by coarsened model
domains.

If more complex subgrid corrections are added to
ADCIRC, then model results will be further improved.

If subgrid corrections in ADCIRC are applied to ocean-
scale domains, then the applicability and usefulness of
these corrections can be increased.

18
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Roadmap
[Hypothesis 1] [Hypothesis 2] [Hypothesis 3]
Initialimplementation of Incorporation of Implementationon
subgrid correctionsin higher level ocean-scale domains

ADCIRC corrections

19
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Roadmap
[Hypothesis 2] [Hypothesis 3]
N \/
Incorporation of Implementationon
higher level ocean-scale domains

corrections

20
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If subgrid corrections are applied to partially wet
elements in ADCIRC, then flow behavior at the
smallest scales can be better resolved by
coarsened model domains.

21
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Level 0 Closure

« Kennedy et al. (2019) introduced subgrid corrections as
different closures in the governing equations.

« The so-called ‘Level O closure corrects flow behavior at
the wet/dry front.

* |n the first chapter of this work, | incorporate the Level 0O
closure into the governing shallow water equations, and
the implement them into the ADCIRC source code.

22
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Level 0 Closure

-
i ‘;.‘: f =
[ i I‘
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Theory

« The primitive shallow water equations were first

averaged using techniques outlined in Kennedy et al.
2019.

 These averaged primitive equations were then
transformed into the GWCE and conservative
momentum equations ADCIRC uses.

24
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Averaged Variables Theory

« To obtain the averaged variables we integrate inside
each element.

 Agiven dummy variable Q would be averaged as
follows:

1 1
(Q)¢ = A_G—[A QdA & (Qw = %IA QdA Where: Ay, = pAg

25
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Averaged conservative x-momentum equation

Jd(UH

(at )G + gC(H)G (aOW
_ 0Cyy (UXUH)¢ aCVU<V><UH>G 0Py
= - i - 3y + f(VH)¢ — g(H)¢ o i

Tsx KU)(UH); 0 - 0(UH)g 0 - 0(UH)q
+é —> MI ™ (H)y +6x o ax +0th dy

Po W
Averaged conservativey-momentum equation
0<VH>G {(hw
H
aCUV<U><VH>G dCyy (VIVH), dP,
- % f(UH)G = g(H)o 5"

(H)y +8x o ox +0y oy

s ¢<rs_y> ¢, [OWH)G 0 0WH)G | 0 o 9VH)G

26
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Averaged GWCE
02 do o 9, 9, 0
P (ODw | 09 I w P (Ow (g(H)G (C)w)

3tz ot ot TP 5t Toax 9%

~ 3y 0x dy
0t
- (VH)Ga—;
Where: _
a(gy;)G = (RHS of x — CME) + 1o(UH)¢
a(fy)c

T (RHS of y — CME) + 1o(VH)g

27
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Wet/dry $»=0H<O0

Correction d=1H>0 ¢ =Aw/A¢
Advection
Correction Cyy = Cyy =Cyy = Cyy =1 Cyy =Cypy =Cyy =Cyy =1
Friction gn?
= Cr= " __ Cyr=(C
Correction Cm,p = Cp= H1/3 M.f ( f)G
Water Surface
Gradient C( =1 Cg =1

Correction

28
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Wetting and Drying

REALITY TRADITIONAL ADCIRC SUBGRIDADCIRC

vﬂe‘

29
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Test Domains

« Three domains were used to test the viability of the
subgrid additions in ADCIRC:
1. Synthetic winding channel
2. Buttermilk Bay, Massachusetts

3. Calcasieu Lake, Louisiana

30
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Water Level (m)
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The subgrid
simulation showed
superior connectivity
through the winding
channel than either
the coarse or fine
traditional solutions
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Coarse Subgrid Coarse Traditional Fine Traditional
1.0
05 { \ I \ I \ / \ The coarse traditional fails
E oo to detect water at the Arm
o5 station
-1.0
= 1.0 . .
E The Main Bay station
o % serves as a control
o < . . .
- 290 showing all simulations
g 05 were forced appropriately
= _10
1.0
05 The coarse simulation fails
¥ 0.0 to detect tidal connectivity
" os at the Back Bay station.
-1.0
0 50 100 0 50 100 0 50 100
Time (hr)
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Calcasieu Lake

Coarse mesh:
1,236 Vertices
2,370 Elements

~ 33 times coarser

Fine mesh:
40,816 Vertices
81,321 Elements
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Coarse Subgrid === Coarse Traditional —— Fine Traditional —— USGS Gauge

LA12 LC2a

Water Level (m)

Date
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Level 0 Closure Conclusions

 The additions of Level O
corrections into ADCIRC Treditional Subgrid Level O
allowed for use of '
partially wet elements
and vertices.

« This is a more accurate
representation of the
wet/dry boundary on

coarsened meshes.
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Level 0 Closure Conclusions

Traditional Subgrid Level O

« Subgrid corrections
iIncreased the accuracy
and hydraulic connectivity
of the model while
running on significantly
coarsened meshes.

(w) uonens|y
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Level 0 Closure Conclusions

 For agiven grid, introducing subgrid corrections into
ADCIRC increases computational cost to the code.

Coarse Subgrid | Coarse Traditional | Fine Traditional

5,248 s 3,728 s 167,514 s

 However, these costs were small when compared to the
efficiency gained by running on coarsened meshes.

41
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Roadmap

[Hypothesis 3 ]

AV

Implementationon
ocean-scale domains

42
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If more complex subgrid corrections are added to
ADCIRC, then model results will be further
improved.

43
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Motivation

« The initial implementation of subgrid corrections in
ADCIRC left a few challenges:

1. Overestimation of bottom friction in the subgrid model.

2. Inability to account for small-scale variation in nonlinear
advection terms.

44
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Higher Level Corrections in ADCIRC

« Using the following equations from Kennedy et al. (2019)
we correct bottom friction and advection coefficients
present in the governing equations.

» These corrections will be referred to as ‘Level 1°
corrections.

Friction Correction Advection Correction
<H3/2Cf_1/2> Cyy = Cyy = Cyy = Cyy = i
w

w

HZ

Cr

R, =

2
Ry
w

Cuy = (H)wR;  Where:

45
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¢=0H<O0

Wet/dry ¢ —1H>0 ¢ =Ay/Ag b =Aw/Ag
: 1 [|H? 2
Advection CUU = CVU = CUV = CVV =1 CUU = CVU =S CUV = CVV =1 CUU = CVU = CUV = CVV = m] C_f R’U
w
L n

Friction Gy = G 31/3 Cup = (Cf)G Cy = (H)wRZ

Surface

Gradient by =1 (r=1 Cr=1

46
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Test Cases

« The following test cases are planned for Level 1
correction in ADCIRC:

1. Synthetic compound channel
2. Realistic domain with hurricane winds and storm surge

48
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¢ LevelO * Levell ---- Fine Traditional
Paved Mesh
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Vertex Alig_;n Element Align

How will element and
vertex alignment
affect these
corrections?
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* The realistic test case is
planned to be for the
region surrounding
Savannah, GA.

» The large tidal range and
flat topography will likely
be a great place to test
Level 1 corrections.

« Domain size will be
similar to the Calcasieu
Lake Test case

52
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Roadmap

SEp—
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If subgrid corrections in ADCIRC are applied to
ocean-scale domains, then the applicability
and usefulness of these corrections can be

increased.

54
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Motivation

« The initial implementation of subgrid corrections in
ADCIRC left a few challenges:

1. Model domain was too small.

2. Limited data processing, stability testing, and
applicability.

55
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Tasks

» Collect elevation and land cover data for the SAB.
— High resolution datasets for the nearshore area of interest
— Low resolution data for areas away from the SAB region.

» Develop a forecast-grade mesh with emphasis on the South Atlantic
Bight.

« Test this mesh both with and without subgrid corrections and
compare to high-resolution mesh simulations.

« Develop visualization programs to communicate the subgrid results.

59
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Data Collection

60
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Mesh Development

61



Testing

« We plan to test our mesh
using Matthew (2016)

 Matthew was a shore
parallel storm that
affected vast stretches of
the SAB.

, MATTHEW 2016 %

62
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Testing

« We will test the accuracy of the new forecasting mesh
both with and without subgrid corrections against the
high-resolution SACS mesh by:

— Comparing water level time series at stations along
the South Atlantic Bight.

— Analyzing maximum water surface elevations along
thalwegs of major waterways

63
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Testing

Look-up table size
for ocean-scale

* Test the relative
computational expense of
the subgrid additions.

« Large lookup tables from

ocean-scale datasets Look-up

could create prohibitively  tablesiz
for small

large storage i

requirements. _
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Timeline

. Summer 2022
Sprlng 2021 Fall 2021 . Testing of SAB mesh
*  Complete Level 0 Theory * Level 1 resultanalysis «  Resultanalysis
* Implement Level O *  Gathering ocean-scale «  Incorporation of subgrid
Correction in ADCIRC datasets corrections into operational
*  Result Analysis *  Subgrid code development code
*  Submission to Journal *  SAB mesh development
Summer 2021 Spring 2022 Fall 2022
" J
Spring 2021 Fall 2021 Summer 2022
Summer 2021 Spring 2022 Fall 2022
«  Complete Level 1 Theory ‘ 5U|?m'55|(|3n of Level 1 work * Documentation and result
* Implement Level 1 tOJqurna ana.I.yS|S _ .
Correction in ADCIRC *  Testing of SAB meslh * Writing dissertation
* TestLevel 1 corrections Subgrid code development * Final defense
*  SAB mesh development
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Thank you
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Averaged Variable Theory

* |n addition, when integrating terms that have time and
space differentiation we follow rules from Whitacker

1985.
9, 0 1 i
aQ _ (Q¢ j QU, - n, dS Averaging for
Jt . dt Ag Jr,, temporal terms

Averaging for
— + n dS
or or  Ag jrw 51 spatial terms

<aQ> _0{Q) 1
G
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