# Sustainability of Barrier Island Protection Policies under Changing Climates

JC Dietrich<sup>1</sup>, DL Anderson<sup>1</sup>, A Gharagozlou<sup>1</sup>, JF Gorski<sup>1</sup>

<sup>1</sup>Dep't of Civil, Construction, and Environmental Engineering, NC State Univ

USCRP FY19 In-Progress Review Virtual Meeting, 19 Nov 2020



# 1. Objectives USCRP Priorities and Objectives

This project aligns with FY19 USCRP Research Topic 11: Coastal Adaptation Pathways for Barrier Island Communities

- 1. Summarize the state-of-knowledge for adaptation methods of coastal communities
- 2. Develop conceptual models for determining alternative adaptation pathways
- 3. Test, revise, and validate approaches using open-source numerical models

We are making progress on all three objectives

- Working with the Town of Nags Head
- David Ryan, Town Engineer

In this presentation, we describe our initial model development

# 1. Objectives Nags Head Nourishment 2019

Change Channel .

**Outer Banks Voice** 

# 1. Objectives

# Performance of Nags Head Nourishments

Nourishment in 2011

- Largest locally funded nourishment to date
- 16 km of coast
- 3.5 million cubic meters

# Major storms

- Irene (2011)
- Matthew (2016)
- Dorian (2019)
- Nor'easters

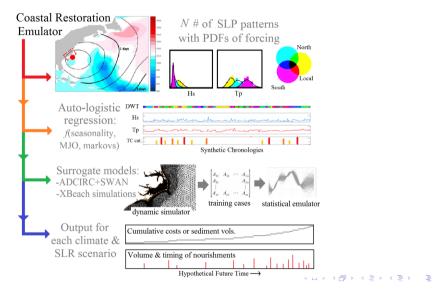
Nourishment in 2019

- 3.0 million cubic meters



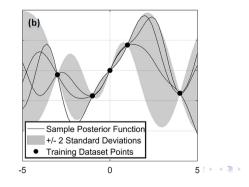
#### 1. Objectives

#### Need to Consider Scenarios for Long-Range Planning


Whitehead, J. and White, H. B. (2017). "Adaptation planning in the Town of Nags Head: Vulnerability, Consequences, Adaptation, Planning Scenarios (VCAPS) Report."

- [T]he most important and immediate next step, prior to engaging in any long range planning efforts and studies identified in the overall priority actions, will be to develop a suite of SLR scenario/probability distributions.
- The scenarios would not predict future changes, but describe future potential conditions in a manner that supports decision-making under conditions of uncertainty allowing the town to analyze vulnerabilities and impacts ....
- [T]hey could be utilized for long range planning such as development of an estuarine shoreline management plan, development of a long term shoreline management plan, and ... progressively improving the town's stormwater drainage infrastructure.

Our emulator will consider scenarios for many climate forcings (not only SLR)


## 1. Objectives

#### Conceptual Diagram of the Proposed Emulator



# 2. Approach What is a Surrogate Model?





K Parker, et al. (2019) Coastal Engineering, 150, 79-93.

ъ

# 2. Approach

### Example of Surrogate Model for Morphodynamics

A recent study compared surrogate models for predictions of dune erosion during storms

- Combine 100 synthetic storm events with a morphodynamic model
- That study used storms to predict beach/dune response

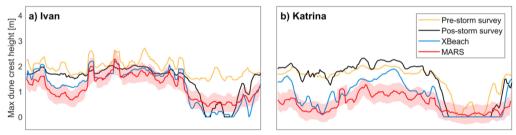



Figure 8: Comparison of maximum dune crest elevation as predicted by XBeach and MARS against survey data for hurricanes Ivan (a) and Katrina (b).

# 2. Approach

Extension to Include Profiles

We will use storms and initial beach/dune to predict beach/dune response

- We assess if a library of synthetic storms and idealized nourishment profiles produces an emulator with the ability to simulate realistic nourishment response to storm sequences

$$H_s, T_p, \theta, \eta, D + \wedge +$$

$$H_{s}, T_{p}, \theta, \eta, D + \checkmark = \checkmark$$

$$H_{s}, T_{p}, \theta, \eta, D + \land = \checkmark$$

$$H_{s}, T_{p}, \theta, \eta, D + \land = \checkmark$$

$$H_{s}, T_{p}, \theta, \eta, D + \land = \checkmark$$

$$H_{s}, T_{p}, \theta, \eta, D + \land = \checkmark$$

# 2. Approach Requirements

To do this, we need:

- Realistic (but not real) storms
  - Use hindcasts from the Wave Information Studies (WIS)
  - Compile 1000s of storm data into possible future scenarios
- Realistic (but not real) initial beach/dune profiles
  - Use surveys from Nags Head
  - Parameterize beach/dune geometry
- High-fidelity morphodynamic model to predict beach/dune response
  - Use the eXtreme Beach (XBeach) model
  - Develop a library of simulations using synthetic storms and beach profiles
- Connect everything in a surrogate model
  - Trained on library of process-based simulations
  - Replace the costly deterministic model

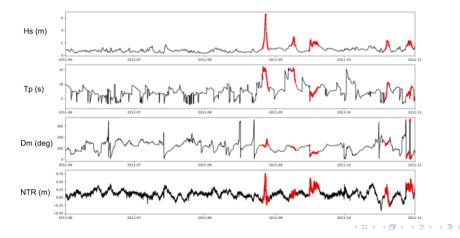
化白豆 化间面 化医医化 医医二氏

#### 3. Execution Challenges Connecting with the Town of Nags Head

We had two challenges related to our relationship with the Town of Nags Head:

# 1. Our collaborator Jess Whitehead took a new position

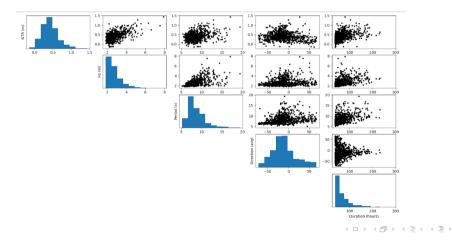
- Formerly the coastal communities hazards adaptation specialist for NC Sea Grant
- Worked previously with the Town of Nags Head, participated in our USCRP pre-proposal, planned to facilitate connections to the town
- Took position as chief resilience officer for NC Emergency Management
- ightarrow Thus we were slow to connect with the town
- 2. Nags Head hired a new coastal engineering firm
  - Now working with Moffatt & Nichol
  - Surveys were transferred electronically in Jul/Aug 2020, then shared with us
  - ightarrow Thus we have been working with the survey data for only about 3 months


Both challenges have been overcome

- Continue to strengthen relationship with **David Ryan**, Town Engineer

#### Identifying Storms in Wave Hindcasts

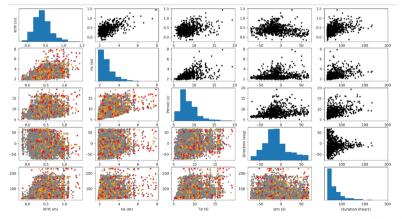
Using the WIS dataset, we examined 40 years and identified 800 storms


– For each storm, saved the parameters  $H_s, T_p, \theta, \eta, D$ 



## Sampling to Create Synthetic Storms

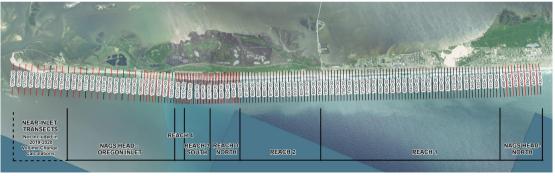
Then examine the relationships between the observed storms


- Sample the parameter spaces to obtain realistic (but not real) synthetic storms



## Sampling to Create Synthetic Storms

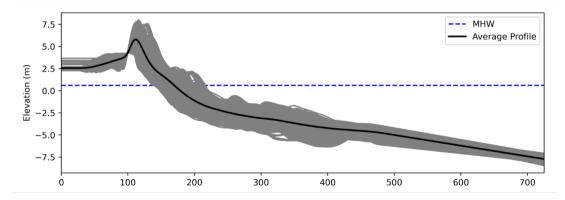
Then examine the relationships between the observed storms


- Sample the parameter spaces to obtain realistic (but not real) synthetic storms



### **Bi-Annual Surveys**

The Town of Nags Head conducts regular surveys of their nourishment project area


- Twice per year every Jun/Jul and Oct/Nov
- Transects every 500 ft near the town, with wider spacing away from the nourishment
- This is a valuable dataset for seasonal storm effects and long-term erosion



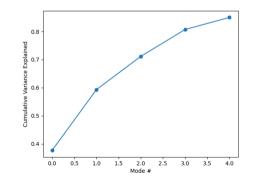
Beach/Dune Profiles

Interpolated the real profiles from the entire coast and all surveys

- Total of 15000 profiles



Next step is to parameterize these beach/dune profiles


э

化口压 化固定 化医压化医压

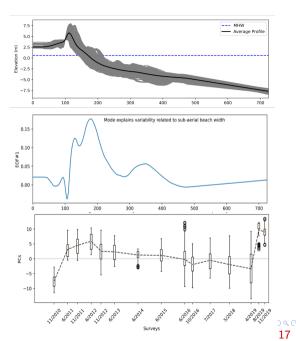
#### Principal Component Analysis

To parameterize the profiles, we used principal component analysis (PCA)

- This is a way to reduce the dimensionality of the dataset
- Represent most of the variability with only a few modes and components
- This will reduce the number of simulations to train the surrogate model



Principal Components for Nags Head Surveys


Each mode and component is related to variability in the profiles

- Largest amplitudes at beach
- Component shows nourishments in 2011 and 2019, gradual erosion between

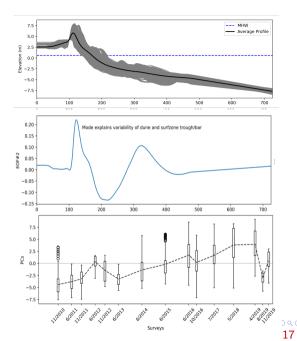
Mode 2 explains variability related to dune and surfzone trough / bar

- Aeolian growth of dune over time

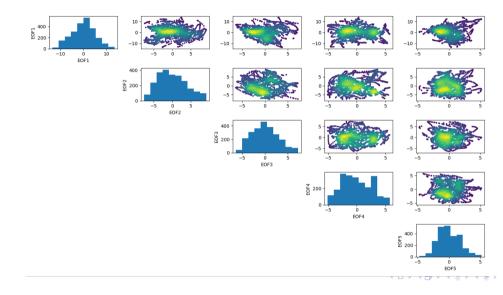
We consider first five modes



Principal Components for Nags Head Surveys


Each mode and component is related to variability in the profiles

- Largest amplitudes at beach
- Component shows nourishments in 2011 and 2019, gradual erosion between

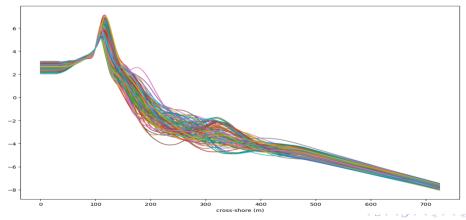

Mode 2 explains variability related to dune and surfzone trough / bar

- Aeolian growth of dune over time

We consider first five modes



#### Sampling of Components from Five Modes




୬ବଙ 18

#### Realistic Profiles from PCA

Use principal components to construct realistic profiles

- Sample the weight for each component, then add weighted components into one profile
- Leads to 150 realistic profiles for the Nags Head nourishment



#### Realistic Simulations of Storm-Driven Erosion

We use these realistic storms and profiles to run  ${\bf 150}$  XBeach simulations

- Each profile was used to create a 2D domain
  - Size of 5 km by 2 km (500 cells by 243 cells)
  - Alongshore uniform profile
- Each storm was applied as boundary forcing for one profile/domain
  - Wave heights  $H_s$ , periods  $T_p$ , and surge  $\eta$  applied with triangular approach
  - Constant forcing for wave directions  $\boldsymbol{\theta}$
  - Variable storm durations D as sampled

Computational requirements were less than expected

- Each simulation takes 2 to 6 hr on 28 cores
- Using resources at NC State, Gharagozlou completed the simulations in less than a week

Library of Simulations



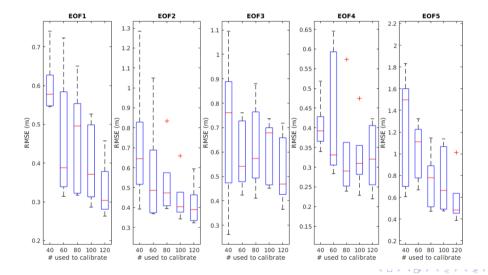
Library of Simulations



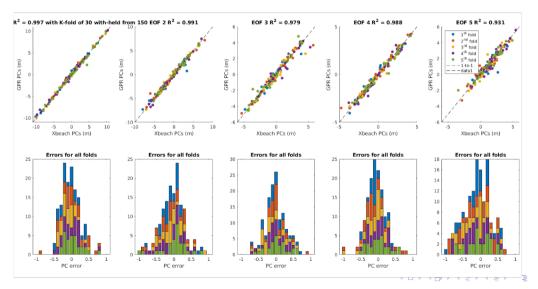
Library of Simulations



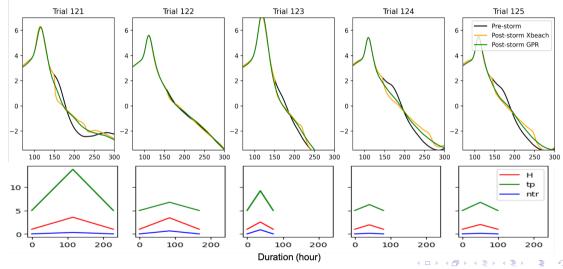
Surrogate Model


We use these XBeach simulations to train a surrogate model

- This statistical model will replace our process-based (XBeach) model for future profiles


# We select a Gaussian Process Regression (GPR) model

- Also known as Bayesian non-parametric regression, or Kriging
- Should scale better than other surrogates when many dimensions are used as inputs
- Used (successfully) for other coastal problems, including storm surge predictions
- We may consider other surrogates at a later time


## 4. Results Surrogate Model Convergence



#### Surrogate Model Validation to Withheld Profiles



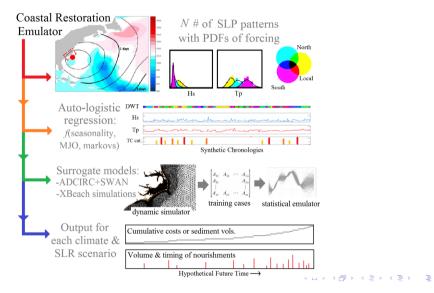
#### Examples of Surrogate Model Validation to Withheld Profiles



## 5. Project Deliverables In-Progress

So far, we have advanced in two key aspects of our model development

- 1. Identification of storms for the climate emulator (not shown)
  - Attributes for each weather pattern from historical wave data and storm tracks
  - Isolate storms from the CFSR global sea level pressure fields
  - Categorize based on strength


# 2. Connect storm data with beach/dune profiles for first try at surrogate model

- Identified 800 real storms from 40 years of WIS hindcast data
- Sampled to create 150 realistic storms
- Analyzed surveys of real beach/dune profiles from Nags Head
- Used PCA to create 150 realistic profiles
- Created a surrogate model for storm-driven erosion of nourished beaches
- Good match between statistical/surrogate and process/XBeach models

Interim results are promising!

### 6. So What?

#### Conceptual Diagram of the Proposed Emulator



# 7. Stakeholder Engagement Working with the Town of Nags Head

Our engagement has been with David Ryan, Town Engineer for Nags Head

- Conversations by email, phone call in late Jun
- Very appreciate of his willingness to share survey data, nourishment reports
- Those data have allowed us to jump forward during the last 3 months

Now we need to cycle back to him

- Get his input on the design of the next iteration of our surrogate model
- What other parameters should be included? What outputs will be helpful?

Long-term goal is to open to other communities

- Support barrier island protection policies

# 8. Summary Metrics Student Training and ASBPA Virtual Conference

This project has supported the training of:

- Dr. Dylan Anderson, ORISE Fellow at FRF, full-time NCSU post-doc starting Jan
- Alireza Gharagozlou, PhD student, nearing graduation in Spring 2021
- Jessica Gorski, BS student, nearing graduation in Spring 2021



This project has supported one conference presentation:

- A Gharagozlou, et al, ASBPA 2020 National Coastal Conference, 13-16 October 2020.

### 9. Future Plans

Connecting Pieces in the Puzzle

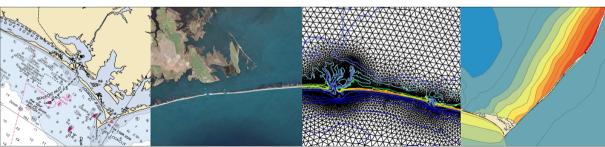
Our future plans will focus in three key aspects of model development

# 1. Refine the surrogate model

- This first iteration is promising, but it lacks complexity
- Add parameters to better represent time history of each storm?
- Add parameters to better represent variability of beach/dune profiles?
- What are the errors between surrogate and true morphodynamics?

# 2. Connect to a climate emulator

- Expand the capabilities from Dylan's PhD work
- Add tropical cyclones and nor'easters
- Represent sequences of realistic storms


# 3. Apply the framework for predictions of long-term erosion

- What is the performance of a beach nourishment over a decadal time scale?
- Can we inform management decisions?

# 10. USCRP and You Proud to Participate in USCRP

How can the USCRP help you to advance and/or communicate your research findings?

- Need to better plug into expertise at USCRP member agencies
  - Other datasets to consider?
  - Other models/tools to try?
- Need feedback
  - Thanks for your attention!

