Improving predictions of coastal flooding via sub-mesh corrections

Johnathan Woodruff¹, J.C. Dietrich¹, A. Kennedy², D. Wirasaet², D. Bolster², Z. Silver², S. Medlin¹, R. Kolar³

¹North Carolina State University – Raleigh, NC ²University of Notre Dame – South Bend, IN ³University of Oklahoma – Norman, OK

Introduction

- Sub-mesh corrections are incorporated into the ADvanced CIRCulation (ADCIRC) finite element model
- ADCIRC is a state-of-the-art storm surge model that has been used extensively over the last 30 years for coastal flooding predictions

Introduction

- High resolution is computationally **costly**
 - Hinders the speed of ADCIRC runs
 - Delays the forecast predictions
- This study aims to increase the accuracy and efficiency of ADCIRC by:
 - Adding sub-mesh correction factors to the governing equations
 - Running on coarsened meshes

NOMAD mesh v1e MSL (HSOFS)

This mesh is used in real-time forecasting by NOAA and the **ADCIRC** Prediction System (APS).

Interpolated bathymetry of the mesh

Sub-mesh Features

- Sub-mesh features:
 - Hydraulic features that influence flow
 - Exist below the resolution of the mesh
 - Include: small scale channels, ponds, marsh grasses, and roadways

Theory

- The primitive shallow water equations were first averaged using techniques outlined in Kennedy et al. 2019.
- These averaged primitive equations were then transformed into the GWCE and conservative momentum equations ADCIRC uses.

Averaged Variables Theory

- To obtain the averaged variables we integrate inside each element.
- A given dummy variable *Q* would be averaged as follows:

$$\langle Q \rangle_G \equiv \frac{1}{A_G} \iint_{A_W} Q dA \qquad \& \qquad \langle Q \rangle_W \equiv \frac{1}{A_W} \iint_{A_W} Q dA \qquad \text{Where: } A_W = \phi A_G$$

GWCE Conversion $\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial J_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$ $\phi \frac{\partial^2 \langle \zeta \rangle_W}{\partial t^2} + \phi \tau_0 \frac{\partial \langle \zeta \rangle_W}{\partial t} + \frac{\partial \langle \tilde{J}_x \rangle_W}{\partial y} + \frac{\partial \langle \tilde{J}_y \rangle_W}{\partial y} - \langle U \rangle_W \langle H \rangle_G \frac{\partial \tau_0}{\partial y} - \langle V \rangle_W \langle H \rangle_G \frac{\partial \tau_0}{\partial y} = 0$

Where:

- ϕ is the wet area fraction
- Subscripts ()_W and ()_G mean the variable was averaged over the wet area or whole area respectively

Sub-mesh calculations

- Sub-mesh calculations are performed using a high resolution digital elevation model (DEM) underlying a ADCIRC mesh of coarser resolution.
- Sub-mesh correction factors such as φ and ⟨H⟩_G are found by integrating the sub-areas within each element.
- Sub-mesh quantities are precomputed and read into ADCIRC.

Sub-mesh in 2D

- In 2D the elements are split up into 3 sub-areas.
- Sub-mesh calculations are performed based on the DEM lying beneath the mesh for each subarea within the element.

Wetting and Drying

Wetting and Drying Algorithm

Test Domains

- Two domains were used to test the viability of the submesh additions in ADCIRC:
 - 1. Buttermilk Bay, Massachusetts
 - 2. Calcasieu Lake, Louisiana

Buttermilk Bay

- Manning's n = 0.022
- Forced with 1 m sinusoidal tidal signal
- Water levels taken at points denoted by \otimes
- Sub-mesh bathymetry 3 m resolution.
- 5% ϕ cutoff

Buttermilk Bay

Vertices: 830 Elements: 1,569

Vertices: 4,795 Elements: 9,412

17

Calcasieu Lake

- Interpolate mesh properties from SL16 mesh
- Force ocean boundary with Rita Hurricane simulation run on SL16 mesh
- Use GAHM vortex winds over entire domain
- $10\% \phi$ cutoff
- 8 gauge locations to validate simulation results

Calcasieu Lake w/ Sub-mesh

Future Work

- Are sub-mesh corrections a viable option for storm surge forecasting?
 - Need to test on ocean scale mesh.
- Can we further improve the sub-mesh results by adding more corrections?
 - Can we incorporate cell clones?
- Develop a user-friendly display program to showcase sub-mesh results.

Thank you

Questions?

Thank you to the National Science Foundation for sponsoring this research