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Predicting building damage as a function of hurricane hazards, building attributes, and

the interaction between hazard and building attributes is a key to understanding how

significant interaction reflects variation hazard intensity effect on damage based on

building attribute levels. This paper develops multihazard hurricane fragility models for

wood structure homes considering interaction between hazard and building attributes.

Fragility models are developed for ordered categorical damage states (DS) and binary

collapse/no collapse. Exterior physical damage and building attributes from rapid

assessment in coastal Mississippi following Hurricane Katrina (2005), high-resolution

numerical hindcast hazard intensities from the Simulating WAves Nearshore and

ADvanced CIRCulation (SWAN+ADCIRC) models, and base flood elevation values are

used as model input. Leave-one-out cross-validation (LOOCV) is used to evaluate model

prediction accuracy. Eleven and forty-nine combinations of global damage response

variables and main explanatory variables, respectively, were investigated and evaluated.

Of thesemodels, one DS and one collapsemodel met the rejection criteria. Thesemodels

were refitted considering interaction terms. Maximum 3-s gust wind speed andmaximum

significant wave height were found to be factors that significantly affect damage. The

interaction between maximum significant wave height and number of stories was the

significant interaction term for the DS and collapse models. For every 0.3 m (0.98 ft)

increase in maximum significant wave height, the estimated odds of being in a higher

rather than in a lower damage state for DS model were found to be 1.95 times greater for

one- rather than for two-story buildings. For every 0.3 m (0.98 ft) increase in maximum

significant wave height, the estimated odds of collapse were found to be 2.23 times

greater for one- rather than for two-story buildings. Model prediction accuracy was 84%

and 91% for DS and collapse models, respectively. This paper does not consider the

full hazard intensity experienced in Hurricane Katrina; rather, it focuses on single-family

homes in a defined study area subjected to wind, wave, and storm surge hazards. Thus,

the findings of this paper are not applicable for events with hazards that exceed those

experienced in the study area, from which the models were derived.
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INTRODUCTION

Data-based fragility models account for a range of variables
(Nateghi et al., 2011; Pitilakis et al., 2014), model damage as a
function of multiple hazard parameters and building attributes,
consider variability in building and environmental attributes,
and use field data to predict future damage and validate model
performance. If field data are representative of a range of
hazard parameters, building attributes, and building damage
data, data-based models will effectively predict damage, and
identify variables that significantly contribute to damage. In
addition to their simplicity, data-based models are more realistic
than simulation-basedmodels, as themodels are developed based
on observed data. On the other hand, the availability of data and
presence of missing data due to severity of damage may be a
common issue for these models. Another issue is subjectivity of
the model results particularly, when damage is assessed without
a defined damage scale. Data-based fragility models have been
widely implemented to estimate the probability of collapse or
being in or exceeding a specified damage state for buildings
subjected to tsunami (e.g., Reese et al., 2007, 2011; Koshimura
et al., 2009; Suppasri et al., 2012, 2013; Charvet et al., 2014a,b,
2015; Muhari et al., 2015) and earthquake (Porter et al., 2007;
Tang et al., 2012; Lallemant et al., 2015). Although not specific
to building, Padgett et al. (2012) empirically modeled damage
to coastal bridges along the US Gulf Coast using multivariate
logistic regression models, Reed et al. (2016) developed a logit
fragility model to predict damage for power systems, and
Kameshwar and Padgett (2018) developed a wind buckling and
storm surge flotation fragility models for oil storage tanks.

Specific to coastal building subjected to hurricane hazards,
data-based fragility models have been used to estimate building
damage as a function of hazard parameters (H), environmental
(E), and building attributes (A). Tomiczek et al. (2014a)
developed a multivariate regression fragility model for pile-
elevated wood structures to estimate the probability of collapse
as a function of H (i.e., maximum current velocity, breaking wave
height, maximum significant wave height) and A (i.e., freeboard
height, building age). Massarra et al. (2019) developed a
predictive data-based fragility models to predict the probabilities
of a home being in or exceeding a certain damage state and
complete failure as a function of H (i.e., maximum significant
wave height, maximum 3-s gust wind speed, and maximum
water speed). Specific to coastal building subjected to storm
surge, Hatzikyriakou et al. (2015) developed a logistic regression
fragility model for single-family home component to predict the
probability of collapse as a function of E (i.e., distance from
the coast, ground elevation,) and A (i.e., elevation of the lowest
horizontal member, structure height above lowest horizontal
member, house age, building perimeter), and Hatzikyriakou and
Lin (2018) developed a cumulative logit fragility model to predict
the probability of a home being in or exceeding a certain damage
state as a function of H (i.e., flood inundation, wave height, dune
erosion) and E (i.e., base flood elevation) with the exclusion of
building attributes (A). In the previous studies, building damage
was modeled as a function of main explanatory variable effects
(i.e., H, E, A), where none of these studies modeled damage

as a function of H, E, A, and their interactions (e.g., HE,
HA, EA). Interaction terms are variables that result from the
product of two (i.e., two-factor interaction terms) or more main
explanatory variables.

For example, a model with explanatory variables (H) and (A),
where H represents surge depth and A represents foundation
type (e.g., slab and elevated), is defined as a model with main
explanatory variables. While modeling building damage as a
function of main explanatory variables reflects the simultaneous
effect of these variables on damage, failure to account for the
interactions lead to bias and misinterpretation of the model
coefficients. Significant interaction terms reflect variation in the
effect of one main explanatory variable on the response variable
based on levels of another main explanatory variables (Jaccard
and Turrisi, 2003). Therefore, to understand the variation in the
effect of increased surge depth on damage for building built on
slab and those elevated, the two-factor interaction (HA) between
surge and foundation is modeled and interpreted.

Interaction between H and A has been less frequently
considered and modeled. Tomiczek et al. (2017) used multiple
linear regression models to estimate probability of building
damage as a function ofH (i.e., maximumwater depth,maximum
water velocity), A (i.e., relative shielding, age minimum
freeboard), and HA interaction (i.e., maximum water velocity
and relative shielding). They found that HA interaction term
is an important factor that significantly contributes to damage;
however, the interpretation of the coefficients was limited to
just the indication of the degree of significance, which does
not reflect variation in the effect of maximum water velocity
on probability of damage based on levels of relative shielding.
When considering H, E, and A in the fragility models, two-
factor interaction terms between continuous and categorical
variables (i.e., HA, EH) are easier and more meaningful to
interpret than two-factor interaction terms between continuous
variables (i.e., HH, EE) or between categorical variables (i.e., AA).
In the current literature, HA interaction terms have not been
directly modeled and interpreted in the development of data-
based building fragility model. When HA terms are statistically
significant, they indicate that the effect of H on damage varies
for the levels of A; therefore, damage must be predicted based on
both main and interaction terms.

This paper develops data-based fragility models for wood
structure homes as a function of continuous variables (H, E),
categorical variables (A), and the two-factor interaction (HA)
of H and A variables. The H variables are maximum 3-s gust
wind speed, maximum significant wave depth, maximum surge
depth, and maximum water speed. The E variable is the Federal
Emergency Management Agency (FEMA)-derived base flood
elevation. The A variables are foundation type and number of
stories. The HA interactions are the product of H and A variables,
resulting in eight interaction terms. Videographic global damage
data and building attributes recorded in coastal Mississippi,
simulated hazard data computed by the Simulating WAves
Nearshore and ADvanced CIRCulation (SWAN+ADCIRC)
model, and base flood elevation values derived from Flood
Insurance Rate maps (FIRMs) are the model inputs. Historical
FIRMS for Hancock (1983, 1987, 1992), Harrison, (1980, 1983,
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1984, 1988, 2002), and Jackson (1983, 1987, 1992) Counties
(Mississippi), respectively, were used to obtain base flood
elevation. The historic FIRMS were downloaded from FEMA.
Each portion of every county in the study area had a specific
historic FIRM. As a result, multiple historical FIRMs were
available for every county and not for every building in the study
area. The year of the FIRMs includes multiple FIRMs for each
county in the study area and not for a specific building. The
flood maps are georeferenced in Geographic Information System
(ArcGIS), and base flood elevation values are recorded at building
footprint locations. Overall building damage (i.e., global building
damage) is assessed using the Wind and Flood (WF) Damage
Scale developed by Friedland and Levitan (2009). Proportional
odds cumulative logit and logistic regression models are used to
estimate the probability of being in or exceeding a specified DS
and the probability of collapse, respectively. Model prediction
accuracy is evaluated using “leave-one-out” cross-validation
(LOOCV) and expressed in terms of the cross-classification
rate (CCR).

DATA

Global Building Damage State and Building
Attributes Variables
High-definition, geo-referenced videos were collected for
residential buildings using the VIEWSTM system (Adams
et al., 2004) in Hancock, Harrison, and Jackson Counties of
coastal Mississippi (Figure 1). Videographic data collection
has been proven to be a valid and effective approach for rapid
damage assessment in many post-disaster studies (Curtis
et al., 2007a,b, 2010). It was also found that videographic
approach has several key benefits over field surveys, including
reduced cost, creation of a digital record, and the ability
to process the images quickly (Lue et al., 2014). The field
deployment took place on September 6–11, 2005 after Hurricane
Katrina as part of the Multidisciplinary Center for Earthquake
Engineering Research (MCEER) reconnaissance. The high-
definition, geo-referenced video camera was mounted on the
passenger side of a slowly moving vehicle, and data were
recorded. After the reconnaissance was completed, the videos
and still images extracted from these videos were reviewed
to document building attributes and global building damage
for every building along the driving route by surveying the
parts of the buildings captured on the videos (e.g., front and
side of the building). For each surveyed building, the overall
observed building damage (e.g., minor damage, moderate
damage, severe damage) was visually assessed using the
Wind and Flood (WF) Damage Scale developed by Friedland
and Levitan (2009). Building attributes (e.g., foundation
type, number of stories) were also visually documented for
each surveyed building. Roof damage was assessed using
0.3 m spatial resolution post-event National Oceanic and
Atmospheric Administration (NOAA) aerial color images. The
database source for the land parcel is Mississippi Automated
Resource Information System (MARIS). Building footprint
polygons are from the City of Biloxi, City of Gulfport,

FIGURE 1 | Study areas and building observation locations.

Southern Mississippi Planning and Development District,
and Jackson County.

The WF Damage Scale categorizes global combined wind
and flood residential building damage into seven damage classes
ranked WF0 through WF6. The WF Damage Scale has been
previously adopted by Massarra et al. (2019) and modified and
applied by Hatzikyriakou (2017), Tomiczek et al. (2017), and
Zhang et al. (2017) to classify building damage data obtained
from field reconnaissance. A database that includes land parcel
data and building footprint polygons was developed using a
geographic information systems (ArcGIS). The building location
in the study area was represented using the calculated centroid
for each building footprint. The building in the study area were
wood-framed, one- and two-story residential homes built on
slabs or elevated foundations and with siding or brick cladding.
Few buildings with characteristics differing from the previous
characteristics were found in the study area. These buildings
along with those with unassessed damage states were excluded
from the analysis, resulting in a final dataset of 866 single-
family homes (Table 1) that describes the global building damage
sates (DS), number and percentage of buildings, slabs, elevated
foundation, and one and two stories in each damage level. For the
uncertainties associated with damage assessment and to ensure
that damage levels recorded by one assessor match those that
would be recorded by another assessor, buildings in the study
area were assessed by two assessors. A confusion matrix showing
assessment results was then developed (Massarra et al., 2019),
where a cross-classification rate (CCR) of 99%was found between
the two assessors.

A low number of observations in WF0, WF1, WF4, and WF5
was found, which may indicate issues in model fitting. Lillesand
et al. (2014) recommended that a minimum of 50 observations
be collected for each DS level; therefore, WF DS were grouped to
represent the DS response variable Y. Grouped WF DS with low
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TABLE 1 | Frequency and percentage % of global building damage states, foundation type, and number of stories.

Levels, j Damage states Number of

buildings (%)

Number of slab

(%)

Number of

elevated floor (%)

Number of

one-story (%)

Number of

two-story (%)

1 WF0 = no damage 4 (0.46%) 2 (0.23%) 2 (0.23%) 4 (0.46%) 0 (0.00%)

2 WF1 = minor damage 7 (0.81%) 3 (0.35%) 4 (0.46%) 6 (0.69%) 1 (0.12%)

3 WF2 = moderate damage 60 (6.96%) 41 (4.73%) 19 (2.19%) 49 (5.66%) 11 (1.27%)

4 WF3 = severe damage 349 (40.30%) 219 (25.29%) 130 (15.01%) 279 (32.22%) 70 (8.08%)

5 WF4 = very severe damage 45 (5.20%) 34 (3.93%) 11 (1.27%) 24 (2.77%) 21 (2.42%)

6 WF5 = partial collapse 42 (4.85%) 20 (2.31%) 22 (2.54%) 30 (3.46%) 12 (1.39%)

7 WF6 = collapse 359 (41.45%) 137 (15.82%) 222 (25.64%) 166 (19.17%) 193 (22.29%)

TABLE 2 | Model (n), number of observations in each Wind and Flood (WF)

damage states (DS), and global building DS response variable levels for each

model, DSj,n.

Model (n) WF0 WF1 WF2 WF3 WF4 WF5 WF6

No. Obs. 4 7 60 349 45 42 359

1 DS1,1 DS2,1 DS3,1 DS4,1 DS5,1

2 DS1,2 DS2,2 DS3,2 DS4,2

3 DS1,3 DS2,3 DS3,3

4 DS1,4 DS2,4 DS3,4 DS4,4

5 DS1,5 DS2,5 DS3,5

6 DS1,67 DS2,6 DS3,6

7 DS1,7 DS2,7 DS3,7 DS4,7

8 DS1,8 DS2,8 DS3,8

9 DS1,9 DS2,9 DS3,9

10 DS1,10 DS2,10

11 DS1,11 DS2,11

number of observations are considered less reasonable models
for damage prediction and were excluded from consideration
resulting in DS response variable Y for n models, each with j
levels,DSj,n (Table 2). Models 1–9 represent models with ordered
multinomial categorical response variables, while models 10 and
11 represent models with binary response variables.

Simulated Explanatory Hazard Variables
Hazard parameters are characterized by wind speeds, significant
wave heights, and water levels during Katrina at the building
sites. Because these variables were not observed during the
storm at all locations, it is necessary to use a high-resolution,
predictive modeling system to represent their spatial and
temporal variations during the storm. The tightly coupled
ADvanced CIRCulation (ADCIRC) and Simulating WAves
Nearshore (SWAN) models have been well-validated for Katrina
simulations, with a mean absolute error within 0.25 m (Dietrich
et al., 2010).

It can be challenging to predict the evolution of individual
waves over a large geographical domain, and thus, it is common
for wave models to predict the evolution of wave energy, which
can then be integrated to determine variables like the significant
wave height, mean wave period, etc. SWAN solves the spectral
action balance equation for the action density N(t, λ,ϕ, σ , θ),

which can vary in time t, geographic space (λ,ϕ) with longitudes
λ and latitudes ϕ, and spectral space (σ , θ) with frequencies σ

and directions θ (Booij et al., 1999). SWAN was extended in
its functionality (Zijlema, 2010) and then coupled tightly with
ADCIRC, which solves modified forms of the shallow water
equations for the evolution of the total water depth H = h + ζ ,
where h is the local bathymetry and ζ is the free surface elevation
relative to the geoid, and the depth-averaged current velocities U
and V (Luettich and Westerink, 2004; Westerink et al., 2008).

ADCIRC passes the local water depths and current velocities,
which are used by SWAN to compute the changes in wave
energy due to refraction and frequency shifting. SWAN passes
the local radiation stress gradients, which are used by ADCIRC
as surface stresses in its momentum equations. Storm-driven
waves and surge can evolve over a wide range of spatial scales,
with a grid size from kilometers in deep water and on the
continental shelf, to tens of meters in small manmade and natural
channels in coastal regions. SWAN+ADCIRC describes these
spatial scales by using an unstructured mesh with triangular,
finite elements, which can vary in size so that resolution (and
thus accuracy) can be increased in regions of specific interest.
The model results in this study were computed on the SL16
mesh, which was developed and validated for the devastating
Gulf hurricanes of 2005 and 2008 (Dietrich et al., 2012a,b). This
mesh provides high-resolution coverage of the northern Gulf
coast from western Louisiana through Alabama, including where
building damage states were observed along theMississippi coast.
In these regions, the mesh resolution is typically about 100 m in
coastal floodplains, with higher resolution in channels and near
hydraulic features. This resolution does not allow for predictions
of smaller-scale processes like wave set-up and interaction with
built infrastructure, but it does allow for wide coverage of storm
hazards along the entire region affected by Katrina.

The wave and surge models are forced by wind fields that
were developed using objectively analyzed, airborne, and land-
based measurements. The measurements are assimilated into the
Hurricane Research Division Wind Analysis System (H∗WIND;
Powell et al., 2010) and then blended with Gulf-scale winds using
an Interactive Objective Kinematic Analysis (IOKA; Cardone
et al., 2007). The winds represent 10-min sustained wind speeds
at 10 m elevation and are then interpolated onto a regular 0.05×
0.05 grid with snapshots every 15min, which are read and applied
in SWAN+ADCIRC. For the estimation of building damages,
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these winds were converted to an averaging period of 3 s (Krayer
and Marshall). Thus, for the data-based fragility analyses, the
model outputs were interpolated at the building locations to
provide time series of wind speed (U10; m/s), significant wave
height (HS; m), water level (ζ ; m relative to NAVD88), and water
speed (U and V ; m/s). U10 is provided at an elevation of 10 m
and converted to an averaging period of 3 s; HS is computed
by integrating the action density in spectral space in SWAN;
ζ is computed by ADCIRC and is representing the combined
contributions of tides, storm surge, and wave-induced setup; and
U is computed by ADCIRC and represents the depth-averaged
velocities at each location.

For the uncertainties associated with hazard parameters,
observations for peak wind speeds at 11 buoys, peak wave heights
at 17 stations, and peak water levels at 354 stations were used
during Hurricane Katrina (2005). To the authors’ knowledge,
peak current speeds were observed at seven stations along the
Mississippi and Alabama coasts during the Deepwater Horizon
oil spill (2010) but not during Hurricane Katrina or other recent
storms in this region. SWAN+ADCIRCwas previously validated
using the same observations (Dietrich et al., 2012a,b). These
observations were used to quantify the prediction uncertainties
by calculating mean absolute errors and standard deviations at
these stations. Mean absolute error was found to be 2.83 m/s,
1.07 m, 0.20 m, and 0.67 m/s for peak wind speeds, peak wave
heights, peak water levels, and peak current speeds, respectively.
Standard deviation was found to be 2.84 m/s, 1.44 m, 0.3 m,
0.26 m/s for peak wind speeds, peak wave heights, peak water
levels, and peak current speeds, respectively. With such a large
and complex domain, the calculated error statistics indicate a
high level of accuracy as well as the uncertainties associated with
hazard parameters.

Table 3 lists the continuous explanatory variables (Xh) and
(XBFE) and the binary categorical variables (Za) used to fit
the fragility models. Variable Xh are the maximum values of
the time series obtained from the coupled SWAN+ADCIRC
models. The maximum surge depth (Dmax) at the centroid of
each building footprint was calculated as the difference between
maximumwater level (ζmax) and the bathymetry/topography (m)
of the SL16 mesh (NAVD88) at that location. The maximum
surge depth within the building

(
DW,max

)
was calculated

as the difference between surge depth (Dmax) and h, where
h is the approximate first floor elevation of each house in
meters. Approximate first floor elevation was calculated as the
sum of the top of the lowest floor height above the local
ground and topography at that location, where the top of
the lowest floor height above the local ground was estimated
by counting the number of building steps and assuming an
average 17.8 cm (7 in) step rise. The maximum significant
wave depth

(
Hd,max

)
was calculated as (HS,max + Dmax) – h.

Variable Za is the building attribute that represents binary
foundation (ZFT) and number of stories(ZNS), where the
two levels are defined as slab

(
ZFT,0

)
, elevated

(
ZFT,1

)
, one

story
(
ZNS,0

)
, and two stories

(
ZNS,1

)
. Multicollinearity among

continuous variables was evaluated using the variance inflation
factor (VIF). Positive correlation was found for maximum
significant wave height and maximum surge depth; therefore,

TABLE 3 | Explanatory variables used to construct the fragility models.

Variable Symbol Description Range/Levels

Xh x1 U3.max Maximum 3-s gust wind speed [47.63–67.99]

m/s

x2 Hs,max Maximum significant wave height [0–3.20] m

x3 Hd,max Maximum significant wave depth

above approximate first floor

elevation

[0–11.08] m

x4 Dmax Maximum surge depth above

local ground

[0–7.94] m

x5 DW,max Maximum surge depth within the

building

[−0.61,7.94]

m

x6 Umax Maximum water speed [0–2.80] m/s

XBFE Base flood elevation [0.32–5.23] m

Za zFT ZFT ,0 Foundation type Slab

ZFT ,1 Elevated

zNS ZNS,0 Number of stories Two-story

ZNS,1 One-story

HS,max and Dmax were not included in the same fragility
model.

METHODOLOGY

Fragility Modeling
Generally, one-dichotomy (e.g., collapse or no collapse) response
variable is evaluated using binary logistic regression models.
For response variable Y with two levels (models 10 and 11)
and H hazard variables x1, x2, . . . , xH , one E environmental
XBFE variable, and A building attribute variables z1, z2, . . . , zA
(Table 3), the generalized forms of binary logistic regression,
without and with HA interaction terms, respectively, are given as

logit [P] = ln

[
P

1− P

]
= α +

H∑

h=1

βhxh + βbXBFE

+

A∑

a=1

γaza, and (1)

logit [P] = ln

[
P

1− P

]
= α +

H∑

h=1

βhxh + βbXBFE +

A∑

a=1

γaza

+

H∑

h=1

A∑

a=1

ηhaxhza, (2)

where P denotes the probability of collapse; logit [P] is the logit
link function, which is equal to the natural logarithm (log) of
the odds of collapse; α is the model intercept; βh are hazard
coefficients, βb is base flood elevation coefficient, γa are building
attribute coefficients, and ηha are hazard and building attribute
interaction term coefficients.

Based on Equations (1) and (2), respectively, the estimated
probability of collapse is calculated as
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P =
exp

(
α +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza

)

1+ exp
(
α +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza

) , (3)

P =
exp

(
α +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza +

∑H
h=1

∑A
a=1 ηhaxhza

)

1+ exp
(
α +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza +

∑H
h=1

∑A
a=1 ηhaxhza

) ,

(4)

For response variable Y with ordered categorical multinomial
response variables (models 1–9), logistic regression is extended
to the proportional odds cumulative logit model, which uses
cumulative probabilities to evaluate ordered categories with the
assumption that curves of the various cumulative logits are
parallel. The odds show how likely it is to move up by one level
in the ordinal outcome (e.g., odds of being in DS3 rather than
DS2, or odds of being in DS2 rather than DS1). There is a primary
assumption of proportional odds regression (i.e., proportional
odds assumption). The odds must be the same across each level
of the ordinal outcome for the effect to be valid. With this said,
the odds of inclusion are the same for all categories. The log odds
of response variable Y being in level j or greater, without and with
HA interactions, respectively, are given for j ≥ 2 as

logit
[
P(Y ≥ j)

]
= ln

[
P(Y ≥ j)

1− P(Y ≥ j)

]
= αj +

H∑

h=1

βhxh

+ βbXBFE +

A∑

a=1

γaza, and (5)

logit
[
P(Y ≥ j)

]
= ln

[
P(Y ≥ j)

1− P(Y ≥ j)

]
= αj +

H∑

h=1

βhxh

+ βbXBFE +

A∑

a=1

γaza +

H∑

h=1

A∑

a=1

ηhaxhza, (6)

where the interactions between building attributes and hazard
are represented as the sum of hazard and building attribute
product terms “xhza.” Both Equations (5) and (6) result in a
set of J – 1 equations with unique intercepts (αj) and common
slopes (βh,βb, γa, ηha).

Based on Equations (5) and (6), the estimated probability of Y
being in or exceeding level j is calculated for j ≥ 2 as

P
(
Y ≥ j

)
=

exp
(
αj +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza

)

1+ exp
(
αj +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza

) for j = 2 . . . J.

(7)

P
(
Y ≥ j

)
=

exp
(
αj +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza +

∑H
h=1

∑A
a=1 ηhaxhza

)

1+ exp
(
αj +

∑H
h=1 βhxh + βbXBFE +

∑A
a=1 γaza +

∑H
h=1

∑A
a=1 ηhaxhza

) for j = 2 . . . J. (8)

For the first level (j = 1), the estimated probability of Y being
in or exceeding this damage level is equal to 1. The estimated
probability that the DS falls into a specific categorical damage
level [i.e., P

(
Y = j

)
] is calculated for levels j ≤ J – 1 as

P
(
Y = j

)
= P

(
Y ≥ j

)
− P

(
Y ≥ j+ 1

)
for j ≤ J − 1. (9)

To interpret the influence of increasing continuous main effects
(i.e., Xh, XBFE) on damage, the specific odds ratios (MORh) and
(MORBFE) for two values of xh (i.e.,xh1, xh2) and XBFE (i.e., xBFE1,
xBFE2) with Mh unit increase, where Mh = xh2 − xh1, and
MBFE unit increase, where MBFE = xBFE2 − xBFE1, respectively,
are calculated as

MORh(1,2) = exp
[
Mhβh)

]
=

P(Y≥j|Xh=xh1)
P(Y<j|Xh=xh1)

P(Y≥j|Xh=xh2)
P(Y<j|Xh=xh2)

, and (10)

MORBFE(1,2) = exp
[
MBFEβb

]
=

P(Y≥j|XBFE=xBFE1)
P(Y<j|XBFE=xBFE1)

P(Y≥j|XBFE=xBFE2)
P(Y<j|XBFE=xBFE2)

, (11)

Given that xhand XBFE are continuous variables, MORh(1,2) and
MORBFE(1,2) describe the numerical odds of a building being in
a higher rather than in a lower damage level for each Mh or
MBFE unit increase in Xh andXBFE, holding the other variables
constant, where Mh and MBFE are scaling factors that represent
multiple or fraction of unit increases in hazard intensities and
base flood elevation on the odds ratio. For logistic regression
models MORh(1,2) and MORBFE(1,2) describe the numerical odds
of collapse for each Mh or MBFE unit increase in Xh and XBFE,
holding the other variables constant.

To interpret the influence of the categorical main effect (Za),
the specific odds ratio (MORa) for two levels of za (i.e.,za0, za1) is
calculated as

MORa(0,1) = exp (γa) =

P(Y≥j|Za=za1)
P(Y<j|Za=za1)

P(Y≥j|Za=za0)
P(Y<j|Za=za0)

. (12)

Given that Za is categorical binary variables with levels Za0 and
Za1, MORa(0,1) describes the numerical odds of a building being
in a higher damage level rather than a lower damage level for
Za1 compared to Za0, holding the other variables constant. For
logistic regression models, MORa(0,1) describes the numerical
odds of collapse for Za1 compared to Za0, holding the other
variables constant.

To interpret the influence of the interaction terms
(
XhZa

)
, the

odds ratio MORha(1,2) for HA interaction terms is calculated as
= exp (Mhηha). For proportional odds cumulative logit model,
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this value describes the numerical odds of a building being in
a higher damage level rather than a lower damage level for two
values of xh (i.e., xh1, xh2) with Mh unit increase across levels
of a building attribute (i.e., Za,0, Za,1). For logistic regression
models, MORha(1,2) describes the numerical odds of collapse for
two values of xh (i.e., xh1, xh2) with Mh unit increase across
levels of a building attribute (i.e., Za,0, Za,1). The odds ratio for
HA interaction terms also equals the ratio of two odds ratios
MORh(1,2)|Za,0 and MORh(1,2)|Za,1 and is given as

MORha(1,2) =
MORh(1,2)|Za,1

MORh(1,2)|Za,0
=

expMh (βh + ηha) |Za,1

exp
(
Mhβh

)
|Za,0

=

P(Y≥j|Xh=xh1)
P(Y<j|Xh=xh1)

|Za,1

P(Y≥j|Xh=xh2)
P(Y<j|Xh=xh2)

|Za,0

, (13)

For a proportional odds cumulative logit model, MORh(1,2)|Za,0
is the odds of being in a higher rather than in a lower damage
level for Mh unit increase in xh (i.e., xh1, xh2) given building
attribute level Za,0. MORh(1,2)|Za,1 is the odds of being in a higher
rather than in lower damage level for Mh unit increase in xh
(i.e., xh1, xh2) given building attribute level Za,1. For the range
of hazard intensity available in this study, the obtained odds are
for a specific increase in hazard intensity and vary across different
increases in the hazard intensities. The odds show how likely it is
to move up on one level in the ordinal outcome (e.g., odds of
being in DS3 rather than DS2, or odds of being in DS2 rather
than DS1). There is a primary assumption of proportional odds
regression (i.e., proportional odds assumption). The odds must
be the same across each level of the ordinal outcome for the effect
to be valid. With this said, the odds are the same for all categories.

For logistic regression, MORh(1,2)|Za,0 is the odds of collapse
forMh unit increase in xh (i.e., xh1, xh2) given building attributes
level Za,0. MORh(1,2)|Za,1 is the odds of collapse for Mh unit
increase in xh (i.e., xh1, xh2) given building attribute level Za,1.

The 95% lower (LCI) and upper (UCI) confidence intervals
for MORh(1,2)|Za,0, denominator of Equation (13), is given as

exp
{
Mh

[
β̂h ± 1.96∗SE

(
β̂h

)]}
, where β̂h are the estimated H

coefficients. The 95% lower (LCI) and upper (UCI) confidence
intervals for MORh(1,2)|Za,0, numerator of Equation (13), is given

as exp
{
Mh

[
(β̂h + η̂ha)± 1.96∗SE

(
β̂h + η̂ha

)]}
, where η̂ha are

the estimated HA coefficients, SE
(
β̂h

)
is the standard error

of β̂h, and SE
(
β̂h + η̂ha

)
is the standard error of the summation

of β̂h and η̂ha. The standard error SE
(
β̂h + η̂ha

)
is calculated

as

√
var

(
β̂h

)
+ var

(
η̂ha

)
+ 2cov

(
β̂h,η̂ha

)
, where var

(
β̂h

)
and

var
(
η̂ha

)
are the variances of the estimated hazard

(
β̂h

)

and estimated building attribute and hazard interaction term

coefficients
(
η̂ha

)
, respectively, and cov

(
β̂h,η̂ha

)
is the covariance

of the estimated hazard coefficients β̂h and HA interaction term

coefficients η̂ha. Values of var
(
β̂h

)
, var

(
η̂ha

)
, and cov

(
β̂h,η̂ha

)

are obtained from the variance–covariance matrix of the
model coefficients.

MODEL FITTING AND EVALUATION

To model the interaction terms based on Equations (2) and
(6), each model (n) was first fitted with main effects based on
Equations (1) and (5). For each model (n), 49 arrangements (S),
were fitted (Table 4), where (X) indicates the main explanatory
variables included in the arrangement. These arrangements are
described as follows: (1) arrangement with six main explanatory
variables, (2) arrangement with five main explanatory variables,
and (3) arrangement with four main explanatory variables. The
fit of these arrangements resulted in a total of 539 (11 × 49)
models. The arrangement of six, five, and four variables were
chosen so that the maximum number of hazard and building
attribute variables are included in the fragility models.

For screening purposes, two rejection criteria are used to
evaluate the fit of the models. These criteria are (1) satisfaction of
model requirements (satisfying of proportional odds assumption
for proportional odds cumulative logit model and goodness-
of-fit logistic regression model) and (2) statistical significance
of model parameters (at least one model variable should be
statistically significant or the model is rejected). Among the 539
models, models satisfying criterion 1 are evaluated for criterion
2. Models satisfying the two criteria are then refitted based on
Equations (2) and (6) to include interactions and reevaluated
based on criterion 1. Once models pass criterion 1, models are
assessed based on two other assessment criteria to evaluate the
fit and prediction of the models with interaction terms. The
assessment criteria are described as (a) statistical significance of
model parameters (all interaction terms included in the model
must be significant or the model is rejected) and (b) balance
between CCR and class error (models with high value of CCR but
with high value of CE are considered less reasonable models for
damage prediction).

MODEL VALIDATION

Generally, external cross-validation is used to evaluate the
prediction accuracy for logistic regression and proportional odds
cumulative logit models. When external data are not available, an
alternative approach, known as k-fold cross-validation, is used
to assess external prediction. k-fold cross-validation is based on
partitioning the dataset into k subsets, with k – 1 subsets used
for fitting the model, while the remaining one is used for model
validation. For each partition, the model is validated on the
remaining one using the model that has fit on all other partitions.
In this study, a special case of k-fold cross-validation, known as
leave-one-out cross-validation (LOOCV), where k is equal to the
sample size (N) is used. Recently, this method has been used to
evaluate performance of fragility models for buildings subjected
to tsunami (Macabuag et al., 2016), earthquake (Mai et al., 2017),
and hurricane hazards (Massarra et al., 2019) and for line towers
subjected to wind (Cai et al., 2019). Models satisfied the rejection
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TABLE 4 | Arrangements (S) with main explanatory variables.

Arrangement

(s)

U3,max Dmax Hd,max DW,max Umax XBFE HS,max ZFT ZNS

1 X X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X

6 X X X X X

7 X X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 X X X X

13 X X X X

14 X X X X

15 X X X X

16 X X X X

17 X X X X

18 X X X X

19 X X X X

20 X X X X

21 X X X X

22 X X X X X X

23 X X X X X

24 X X X X X

25 X X X X X

26 X X X X X

27 X X X X X

28 X X X X

29 X X X X

30 X X X X

31 X X X X

32 X X X X

33 X X X X

34 X X X X

35 X X X X

36 X X X X

37 X X X X X X

38 X X X X X X

39 X X X X X

40 X X X X X

41 X X X X X

42 X X X X

43 X X X X X

44 X X X X X

45 X X X X X

46 X X X X X

47 X X X X X

48 X X X X X

49 X X X X X

(criteria 1 and 2) and assessment (criteria a and b) criteria and are
fitted N times, leaving one observation out at each fit.

For each fit and for every left-out observations, the predicted
DS

(
D̂S

)
is then estimated as follows:

• For the logistic regression model, Equation (4) is used to
estimate the predicted probability of collapse (p̂). If p̂ is
estimated to be <0.5, no collapse is assigned as the predicted
DS

(
D̂S

)
; otherwise, collapse is assigned.

• For the proportional odds cumulative logit models, Equation
(9) is used to estimate probabilities that a DS fall into any
specific damage level J. Based on the calculated estimated
probabilities, DS corresponding to the highest estimated
probability is assigned as the predicted DS

(
D̂S

)
.

For every left-out observation, an error matrix with N
observations, d rows, and c columns is then constructed. The
frequency

(
k
)
of observed DS is represented by rows (d),

while the frequency of predicted DS
(
D̂S

)
is represented by

columns (c), summed across the N left-out observations. The
cross-classification rate (CCR), which represents the percentage
of correctly classified damage states, is calculated as CCR =∑C

c=1 kcc∑C
c=1

∑D
d=1 kcd

, where kcc are observations along the diagonal

of the error matrix, and kcd are all observations in the error
matrix. Class error (CE), which represents the percentage of each

misclassified DS, is calculated as CE = 1− kcc∑C
c= 1 kcd

.

RESULTS

Fragility Fitting
Based on Equations (1) and (5), respectively, models 10 and
8, with main explanatory variables (U3,max, HS,max, ZFT , ZNS)
satisfied criteria 1 and 2 (Table 5), while the rest of the models
failed to satisfy criterion 1 and were not evaluated for criterion 2.
To include HA interactions, models 8, and 10 were refitted based
on Equations (6) and (2), respectively, and evaluated based on
criteria 1 and a. Table 6 describes variables used to fit models
that satisfied criteria 1 and a. These models are described with
four main explanatory variables (U3,max, HS,max, ZFT , ZNS) and
one interaction term (H∗

S,maxZNS).Table 7 contains the parameter
estimates, standard error, p-value, factored model coefficients
(Mhβh, Mhηha), odds ratio (MORh ,MORha) calculated based
on = exp

(
Mhηha

)
, and the corresponding CI95% (MORhCI95%,

MORhaCI95%) for models that met criteria 1 and a. Values of
Mhβ , Mhβha, MORh, MORha, MORhCI95%, and MORhaCI95%
were calculated using MU3,max = 4.5 (m/s), MHS,max = 0.3 (m),
MDmax = 1 (m), andMUmax =0.5 (m/s). Asterisks appearing after
p-values denote statistically significant parameters at α = 0.05
level. The subscripts of the coefficients represent, j,h,a, and ha for
α, β , γ , and η, respectively, where j,h,a, and ha correspond to
j= 1,2,3, h=1, 2, a=1,2, and ha= 2,2.

For models 8 and 10, the results show that the damage and
collapse of buildings are significantly affected by the maximum
3-s gust wind speed and maximum significant wave height. As
any of these hazard variables increase, the odds of being in a
higher damage state and collapse increase. Kennedy et al. (2010),
Tomiczek et al. (2014a,b), and Tomiczek et al. (2017) also found
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TABLE 5 | Patterns (n,s) with main explanatory variables for models that satisfied

criteria 1 and 2.

Pattern (n,s) U3,max HS,max ZFT ZNS

(8,42) X X X X

(10,42) X X X X

TABLE 6 | Models with main explanatory variables and interaction terms that

satisfied criteria 1 and a.

Model (n) U3,max HS,max ZFT ZNS HS,max* ZNS

8 X X X X X

10 X X X X X

that wave height significantly contribute to building damage and
should be considered as input in the fragility models. However,
based on the fact that Hurricanes Ike (2009) and Sandy (2012)
were events with low wind speeds, wind speed was excluded from
the analyses of these studies. Hurricane Katrina was also an event
with low wind speeds; however, the maximum 3-s gust wind
speed was found to be a factor that contributes significantly to
damage and collapse. The interaction term enabled interpretation
of how much the damage differs between one- and two-story
buildings with the increasing wave height. The effect of increasing
wave height on building damage can be interpreted from the
model with just heard parameters. However, how much the
damage differs between one- and two-story buildings with the
increasing wave height cannot be interpreted from the model
with just hazard parameters or building attributes; therefore,
models with interaction terms of hazard and building variables
are needed.

Since surge depth and surge depth within the building
are well-known to be significant factors that affect damage,
the significance of these variables in models that failed to
satisfy criterion 1 was evaluated. For all these models, it was
found that maximum surge depth and surge depth within the
building were significant variables that affect damage. Since these
models have not satisfied criterion 1, they cannot be considered
for further analysis. Inclusion of water speed and base flood
elevation inmodels was also investigated. Results show that either
these variables are not significant factors that affect damage,
or these variables are significant factors, but models failed to
satisfy criterion 1.

Interpretation of Main Effects of DS and
Collapse Fragility Models
For model 8, the results show that the damage of buildings
are significantly affected by the maximum 3-s gust wind speed
and maximum significant wave height. As any of these hazard
variables increase, the odds of being in a higher rather than
in a lower damage state increase. Interpretation of the odds
for maximum 3-s gust wind speed, maximum significant wave

height, foundation, and number of stories main effects are
as follows:

• For every 4.5 m/s (10.07 mph) increase in maximum 3-
s gust wind speed, the odds of being in a higher DS are
1.31 times greater (31% increase in odds), holding all other
variables constant.

• For every 0.3 m (0.98 ft) increase inmaximum significant wave
height, the odds of being in a higher DS are 2.41 times greater
(141% increase in odds), holding all other variables constant.

• For buildings with slab foundations, the odds of being in
a higher DS are 1.70 times greater (70% increase in odds)
than for buildings with elevated foundations, holding all other
variables constant.

• For two-story buildings, the odds of being in a higher DS are
0.15 times lower (75% decrease in odds) than for one-story
buildings, holding all other variables constant.

For the logistic model (model 10), the results show that
the collapse potential of buildings is significantly affected by
maximum 3-s gust wind speed and maximum significant wave
height. As any of these hazard variables increase, the odds of
collapse increase. Interpretation of the odds for maximum 3-s
gust wind speed, maximum significant wave height, foundation,
and number of stories main effects are as follows:

• For every 4.5 m/s (10.07 mph) increase in maximum 3-
s gust wind speed, the odds of being in a higher DS are
1.37 times greater (37% increase in odds), holding all other
variables constant.

• For every 0.3 m (0.98 ft) increase inmaximum significant wave
height, the odds of being in a higher DS are 2.57 times greater
(157% increase in odds), holding all other variables constant.

• For buildings with slab foundations, the odds of being in
a higher DS are 2.14 times greater (114% increase in odds)
than for buildings with elevated foundations, holding all other
variables constant.

• For two-story buildings, the odds of being in a higher DS are
0.06 times lower (94% decrease in odds) than for one-story
buildings, holding all other variables constant.

Interpretation of Interaction Terms of DS
and Collapse Fragility Models
For models 8 and 10, the results show that as maximum
significant wave height increase, the odds of being in a higher
DS and the odds of collapse are greater for one- than for two-
story building. Figures 2A,B show estimated odds MORh|Za,1,
MORh|Za,0 (i.e., numerator and denominator of Equation 13)
and the LCI and UCI for models 8 and 10, respectively. The ratio
MORh|Za,1 to MORh|Za,0 is equal to MORha shown in Table 7.
For model 8, MORHS,max ,ZNS shown in Table 7 equals to 1.64.
This is interpreted as follows: for every 0.3 m (0.98 ft) increase in
maximum significant wave height, the odds of being in a higher
DS are 1.64 times greater for one- rather than for two-story
buildings holding all other variables constant. MORHS,max ,ZNS

may also be calculated from Figure 2A as MORHS,max ,ZNS =
MORHS,max |ZNS,1

MORHS,max |ZNS,0
, where MORHS,max|ZNS,1 and MORHS,max|ZNS,0 are
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TABLE 7 | Parameter estimates, standard error, p-value, MORh, MORha, MORhCI95%, and MORhaCI95% for models satisfying criteria 1 and a.

MORhCI95% or MORhaCI95%

Model Coefficient Parameter Estimated Std. Error p-Value Mhβh or Mhηha MORh or MORha LCI UCI

8 α̂2 Intercept 2 −6.87 1.70 <0.0001* – – – –

α̂3 Intercept 3 −7.71 1.70 0.0002* – – – –

β̂1 U3,max 0.06 0.03 0.0290* 0.27 1.31 1.01 1.71

β̂2 HS,max 2.93 0.40 <0.0001* 0.88 2.41 1.90 3.05

γ̂1 ZFT 0.53 0.18 0.0028* – 1.70 1.19 2.42

γ̂2 ZNS −1.92 0.64 0.0030* – 0.15 0.04 0.51

η̂22 HS,maxZNS 1.65 0.53 0.0018* 0.50 1.64 1.20 2.24

10 α̂ Intercept −8.46 2.23 <0.0001* – – – –

β̂1 U3,max 0.07 0.04 0.0480* 0.32 1.37 0.96 1.95

β̂2 HS,max 3.15 0.48 <0.0001* 0.95 2.57 1.94 3.41

γ̂1 ZFT 0.76 0.23 0.0004* – 2.14 1.39 3.28

γ̂2 ZNS −2.88 0.89 0.0013* – 0.06 0.01 0.32

η̂22 HSmaxZNS 2.46 0.71 0.0005* 0.80 2.09 1.38 3.18

*Significant at α = 0.05.

interpreted as follows: for every 0.3 m (0.98 ft) increase in
maximum significant wave height, the odds of being in a higher
DS is 3.95 and 2.41 for one- and two-story buildings, respectively,
holding all other variables constant.

For model 10, MORHS,max ,ZNS shown in Table 7 equals to 2.09.
This is interpreted as follows: for every 0.3 m (0.98 ft) increase
in maximum significant wave height, the odds of collapse are
2.09 times greater for one- rather than for two-story buildings,
holding all other variables constant. MORHS,max ,ZNS may also be

calculated from Figure 2B as MORHS,max ,ZNS =
MORHS,max |ZNS,1

MORHS,max |ZNS,0
,

where MORHS,max|ZNS,1 and MORHS,max|ZNS,0 are interpreted as
for every 0.3 m (0.98 ft) increase in maximum significant wave
height, the odds of being in a higher DS is 5.38 and 2.57 for
one- and two-story buildings, respectively, holding all other
variables constant.

Error matrices, with rows representing the frequency of
observed DS and columns representing the frequency of
predicted DS

(
D̂S

)
, are provided in Table 8 for models 8 and

10; the n subscript in
(
D̂Sn

)
represents the corresponding model

number. Model 8 predicts the probability of being in or exceeding
damage state with 84% prediction accuracy as a function of
maximum 3-s gust wind speed, maximum significant wave
height, foundation type, number of stories, and interaction of
number of stories with maximum significant wave height. DS1,8
represents no damage or very minor damage to severe damage,
DS2,8 represents very severe damage to partial collapse, and DS3,8
represents collapse. For model 8, CE for DS2,8 is high>50%. This
increase in CE may be due to the low sample numbers in WF0,
WF1, WF4, and WF5 for these DS and groupings of these DS.

The high CE for DS2 requires more investigation. Therefore,
sensitivity, specificity, positive likelihood ratio (PLR), and
negative likelihood ratio (NLR) values were calculated on the
confusion matrix. Sensitivity and specificity are useful if the
values are high. High sensitivity values mean that it is unlikely
that the prediction models are unlikely to predict that a building

belongs to a certain DS when the building does not have this
DS. High specificity values mean that the prediction models are
unlikely to predict false DS for the building when the building
does not have this DS. PLR represents the odds of a positive
prediction (predicting certain DS) given that the building belongs
to this DS, and NLR represents the odds of a positive prediction
(predicting a certain DS) given that the building does not belong
to this DS. The desirable values are high PLR and low NLP.
Sensitivity and specificity of DS1, DS2, and DS3 are (0.90, 0.25,
0.92) and (0.92, 0.98, 0.93), respectively. DS1 and DS3 have
high sensitivity and specificity, while DS2 has high and low
specificities; therefore, PLR and NLR values are needed. PLR and
NLR of DS1, DS2, and DS3 are (11.25, 12.5, 13.15) and (0.09, 0.76,
0.08), respectively. The calculated PLR values are >10; therefore,
the model contribution in predicting the three categories is good
(Jaeschke et al., 1994). Despite the fact that CE for DS2 is high
(>50%), the calculated PLR values show that the DS model is
valid and acceptable; however, future work is recommended to
further validate the prediction accuracy of the model on new
datasets. The estimated probability of being in or exceeding DS2,9
and DS3,9, respectively, is estimated as

logit
[
P

(
Y ≥ DS2,8

)]
= −6.87+ 0.06∗U3,max + 2.93∗HS,max

+0.53∗ZFT − 1.92∗ZNS + 1.65∗HS,maxZNS, (14)

logit
[
P

(
Y ≥ DS3,8

)]
= −7.71+ 0.06∗U3,max + 2.93∗HS,max

+0.53∗ZFT − 1.92∗ZNS + 1.65∗HS,maxZNS. (15)

Model 10 predicts probability of collapse with 91% prediction
accuracy as a function of maximum 3-s gust wind speed,
maximum significant wave height, foundation type, number of
stories, and interaction of number of stories with maximum
significant wave height. The estimated probability of collapse is
given as
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FIGURE 2 | Estimated odds MORh |Za ,0, MORh |Za ,1, and 95% lower (LCI) and upper confidence intervals (UCI) for (A) model 8 and (B) model 10.

logit
[
P

(
Y ≥ DS10,2

)]
= −8.46+ 0.07∗U3,max + 3.15∗HS,max

+0.76∗ZFT − 2.88∗ZNS + 2.46∗HS,maxZNS. (16)

Current models aremore comprehensive than othermodels, with
only hazard parameters including previous models developed
by the authors (Massarra et al., 2019). The models predict the
probability of being in or exceeding a certain damage state
and probability of collapse as a function of hazard parameters,
building attributes, and their interactions and explain the effect
of these variables and their interactions on damage that cannot
be explained by fragility models based on just hazard parameters.
The prediction accuracy of the developed models is 84 and 91%,
respectively, which is a 3% increase in accuracy than the previous
models developed by the authors. However, the introduction of
the building attributes and interactions of hazard and building
attribute variables are not the reason behind this increase. The
current developed models are still valid even if the prediction
accuracy is less than those with only the hazard parameters.

STUDY LIMITATIONS

The paper does not intend to holistically describe the damage
caused by Hurricane Katrina but rather is limited to damage
caused to one- and two-story wood-framed single family

TABLE 8 | Observed vs. predicted model error matrices, class error (CE), and

cross-classification rate (CCR) for non-rejected models.

DSj,n D̂S1,n D̂S2,n D̂S3,n Observed Sum CE CCR

DS1,8 378 16 26 420 10% 84%

DS2,8 37 22 28 87 75%

DS3,8 19 11 329 359 8%

DS1,10 462 45 – 507 9% 91%

DS2,10 37 322 – 359 10%

– Indicates error terms are not applicable due to the number of damage levels j for model n.

homes in coastal Mississippi with slab and elevated foundations
subjected to wind, wave, and storm surge hazards during 2005
Hurricane Katrina. Higher wind speeds, wave heights, and
surge depths and velocities may have occurred as a result of
Hurricane Katrina in locations outside the study area, but these
are not considered in this paper. Although the hurricane wind
field extends far beyond the surge inundation extents, this
paper focuses on the multihazard hurricane environment. Many
excellent papers on residential building performance and fragility
functions for high winds exist (e.g., Li and Ellingwood, 2006;
Vickery et al., 2006; van de Lindt et al., 2007; van de Lindt
and Dao, 2009), and these should be consulted outside of the
multihazard area that is the focus of this paper. Further, as the
buildings within the study area were subjected to wind, wave,
and surge hazards, we hypothesize that the DS is higher than
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would be expected if only the wind hazard was considered.
Given the relative range of hazards in this study, wave, or storm
surge hazard variables were statistically significant predictors
of building damage, with problematic multicollinearity between
the two, precluding their simultaneous representation in a
single model.

Wind hazards are widely acknowledged to cause more damage
than any other natural hazard in the US (Emanuel et al., 2006;
Knutson et al., 2010; Wang and Rosowsky, 2012). Application of
the methodology developed in this paper to future multihazard
hurricane events is reasonably expected to result in different
model coefficients, but the new results will not contradict
the current results. While the presented models are robustly
developed and validated, care needs to be taken in interpreting
the models and results, and the findings may not be extrapolated
beyond the hazard range experienced, as they are not applicable
for events with higher wind speeds, wave heights, or surge
depths. Because of the limited hazard intensity range and
specific building attributes available for model development, the
developed models are valid only in this region and other regions
with the same building types that are subjected to the same
range of hazard intensities defined in this study. Therefore, the
developed fragility models are predicated upon building type
and hazard intensity rather than the specific study area. At the
time of the data collection, no specific sampling technique was
implemented. Therefore, a degree of uncertainty is inherent in
the data collection and damage assessment that is not considered
in this analysis. It is noted that, although this is a major source
of uncertainty, this is acknowledged as a significant limitation
present across the field of post-disaster reconnaissance and that
merits consideration in future studies.

SUMMARY AND CONCLUSIONS

In this paper, physical damage of one- and two-story wood-
framed residential buildings built on slab and elevated
foundations in coastal areas was statistically modeled as a
function of maximum 3-s gust wind speed, maximum significant
wave height, maximum surge depth, maximum water speed,
foundation type, number of stories, and two-factor interactions
of hazard and building attribute variables. The proportional
odds cumulative logit model was used to estimate the probability
of being in or exceeding three levels of DS described as (1)
no damage or very minor damage to severe damage, (2) very
severe damage to partial collapse, and (3) collapse, and logistic
regression model was used to estimate the probability of collapse.

The developed models identified the variables that have
the most significant effect on damage and collapse, while the
interaction terms explained the variation of the effect of hazard
parameters on the building damage based on levels of building
attribute. For DS (model 8) and collapse (model 10) models,
maximum 3-s gust wind speed and maximum significant wave
height were found to be significant hazard parameters that affect
building damage and collapse. Additionally, buildings with slab
foundations were more likely to be in a higher damage state or
collapse than elevated buildings. The interaction of maximum
significant wave height with number of stories was statistically

significant and showed that damage for one-story buildings
increases significantly than that for two-story buildings with
increasing wave height, where for a certain increase in maximum
significant wave height (0.3 m used in this study), one-story
buildings were more likely to be in a higher damage state or
collapse than two-story buildings.

Maximum surge depth was found to be a significant predictor
for damage and collapse in all models that include this variable;
however, none of these models satisfied criterion 1 (model
requirements) and were excluded from further analyses. Base
flood elevation, maximum significant wave depth, maximum
surge depth within the building, and interaction between surge
depth and foundation type and between wind speed and number
of stories were found to be significant predictors for damage and
collapse in some models; however, these models were excluded
from further analyses because the models did not satisfy criterion
1 (model requirements).

The methodology developed in this paper is useful for
researchers, coastal engineers, insurance companies, and model
developers who rely on field data more than simulated data.
Models developed in this study are more comprehensive than
those with only hazard parameters and explain how the
significant interaction between hazard and building attributes
reflect variation in hazard effect on damage based on the levels of
building attributes. Models that consider only hazard parameters
are useful when detailed information about the study area
buildings is not available (e.g., quick planning exercises, pre-
event forecasting), while models that consider both hazard and
building attributes provide greater detail about the performance
of buildings based on damage indicator variables. These models
can be used and are appropriate when detailed inventory data are
available. The LOOCV used in this study is a vital advantage over
data-based fragility models found in the literature, where these
models have been developed for inference and interpretation of
model coefficients rather than for future damage prediction. It
is anticipated that future work will use the same methodology
with the inclusion of the location, first floor elevation, and
construction age as input variables to identify the effect of these
variables on damage and collapse.

Additionally, continued investigation of the performance of
the models presented here on other datasets that have the same
characteristic of this dataset will yield increased understanding
about model prediction capability. A sampling technique to
obtain a sample representative of all damages in the area and
an extension of methodology to estimate damage to exterior
components such as roof, wall, openings, and foundation remain
subjects for future work.
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LIST OF SYMBOLS

Symbols Description

H Hazard attributes

A Building attribute

E Environmental attribute

HA Hazard and building attribute interactions

HE Hazard and environmental attribute interactions

EA Environmental and building attribute interactions

HH Hazard attribute interactions

AA Building attribute interactions

EE Environmental attribute interactions

DS Damage state

D̂S Predictive damage state

CV Cross validation

LOOCV Leave-one-out cross-validation

WF Wind and flood

t Time

λ Longitudes

ϕ Latitudes

σ Spectral space frequencies

θ Spectral space directions

H Total water depth

h Local bathymetry

ζ Free surface elevation relative to the geoid

U10 Maximum wind speed

U3,max Maximum 3-s gust wind speed

HS,max Maximum significant wave height

Hd,max Maximum significant wave depth above approximate first floor

elevation

ζ Water level

ζmax Maximum water level

Dmax Maximum surge depth above local ground

DW,max Maximum surge depth within the building

U and V Water speed

Xh A set of continuous hazard variables

x1, x2, . . . , xH Elements of a set of continuous hazard variables

XBFE Continuous explanatory variables

Za A set of binary building attributes variables

z1, z2, . . . , zA Elements of a set of building attributes variables

ZFT A set of binary foundation

ZNS A set of binary number of stories

ZFT ,0 Slab

ZFT ,1 Elevated

ZNS,0 One-story

ZNS,1 Two-story

P Probability of collapse

α Model intercept for logistic regression

α̂ Predictive model intercept for logistic regression

j Damage levels

αj Model intercepts for proportional odds cumulative logit

α̂j Predictive model intercepts for proportional odds cumulative

logit

βh Hazard model coefficients

β̂h Predictive hazard model coefficients

βb Base flood elevation model coefficient

γa Building attribute model coefficients

γ̂a Predictive building attribute model coefficients

ηha Hazard and building attribute interaction term coefficients

η̂ha Predictive hazard and building attribute interaction term

coefficients

OR Odds ratio

MORh Odds ratios for specific hazard

MORBFE Odds ratios for specific based flood elevation

MORha Odds ratios for hazard and building attribute interaction terms

Symbols Description

CI Confidence interval

LCI Lower confidence interval

UCI Upper confidence interval

k Number of fold cross-validation

d Frequency (k) of DS

c Frequency D̂S

CCR Cross-classification rate

CE Class error
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