Using a Multi-Resolution Approach to Improve the Accuracy and Efficiency of Flooding Predictions

Ph.D. Defense June 15, 2020

Ajimon Thomas

Department of Civil, Construction and Environmental Engineering North Carolina State University

Acknowledgements

Thesis Committee

Dr. Casey Dietrich¹, Dr. John Baugh¹, Dr. Elizabeth Sciaudone¹, Dr. Rick Luettich²

¹Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC ²Institute of Marine Sciences, UNC Chapel Hill, Morehead City, NC

Other Collaborators

Taylor Asher¹, Dr. Clint Dawson², Dr. Jason Fleming³, Ashley Kauppila⁴, Mark Loveland², Dr. Ali Samii², Chloe Stokes⁵

¹Institute of Marine Sciences, UNC Chapel Hill, Morehead City, NC ²Institute of Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX ³Seahorse Coastal Consulting, Morehead City, NC ⁴Taylor Engineering, Charlottesville, VA ⁵Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

About Myself

Masters in Offshore Structures 2012, NIT Calicut •

Bachelors in Civil Engineering 2009, CET ●

KERALA

About Myself

Graduate Studies at NC State 🥌 🕬	8/10		×	6	Ľ
Casey Dietrich Hodietrich@ncsu.edu-	😑 Thu, Jan 30	2014, 11:23 AM	\$	*	i
Dear Ajimon:					
My name is Casey Dietrich, and I am an assistant professor i State University. I viewed recently your application for gradua	n the Department of Civil, Construction, and I ate studies with a focus in coastal engineering	Environmental Eng g.	gineerin	g at N(2
My research is in predictive modeling of coastal hazards, esp response in Louisiana following Hurricane Katrina, and I help to evaluate and design surge barriers, and to develop flood ri and surge in real-time. I have attached a PDF with a short de my personal Web site (http://www.caseydietrich.com/).	ecially with respect to hurricane waves and s ed to develop finite-element models of the co sk maps. More recently, I have been running escription of my research interests, and you c	torm surge. I was astal ocean that w I our models to for an find more infor	involve ere use ecast w mation	ed in the ad aves at	8
I would enjoy the opportunity to learn more about your interest to schedule a Skype call during the next few weeks.	sts and answer any questions you may have	Please let me kn	ow if yo	u woul	d like
Thanks for your interest in NC State					
Pareu Olalash					

Ph.D. in Civil Engineering, NC State University Arrived in Raleigh in Fall 2014

NCSU Graduate Scholarship Award 📂 🕬 🕬

Ranji Ranjithan «tanji@mesu.edu» to me: Renee, Desev. « @ Mar 11, 2014 2:47 PM

Dear Ajimon.

Congratulations! Based on your strong record, we are very pleased to inform you that the Department of Civil. Construction, and Environmental Engineering (CCEE) has selected you to receive a CCEE Graduate Scholarship award for study toward a PHD in Civil Engineering. This decision was made after a careful review of applications. You were selected in recognition of your promising abilities to conduct research and potential to succeed in our graduate program. Please see the enclosed letter for details.

We hope that the educational opportunities we provide and the scholarship award will allow you to make an early decision to begin your PHD studies at NC State. The official deadline for your written response is April 15; however, if possible, we would truly appreciate your decision at an earlier date

We look forward to you joining our program and letting us help foster your professional development and career in coastal engineering if you have any questions in the meantime, please do not hesitate to contact us.

Sincerely yours

Ranji Ranjithan

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

Storm Surge

- Height of the water above the normal predicted astronomical tide
- Large-scale features
 - the intensity, size, speed, and path of the storm, the general configuration of the coastline, bottom topography near the coast, the stage of the astronomical tide
- Small-scale features
 - convergence or divergence in bays and estuaries, local wind-setup, seiching

Importance of Storm Surge Modeling

Background and Motivation

FEMA-SAB Mesh

• 44 % of the worlds population live within 150 km of the coast (UN Atlas of the oceans, 2018)

Case Study

NC STATE

UNIVERSITY

Introduction

 In the U.S., > 39 % (123.3 million) of the population lived in coastal shoreline counties in 2010 (NOAA and U.S. Census Bureau, 2013)

Source: ABC News

Source: The Weather Channel

Numerical Modeling of Storm Surge

Storm Surge Modeling using ADCIRC

Background and Motivation

FEMA-SAB Mesh

ADvanced CIRCulation

Introduction

Case Study

NC STATE

- Finite-element model for oceanic, coastal and estuarine waters
- Unstructured meshes are used to represent relatively small features while maintaining coarser resolution elsewhere in a large domain
- Solves water levels using the Generalized Wave Continuity Equation (GWCE) and the velocities using vertically-integrated momentum equations
- Two-dimensional depth averaged version (2DDI) is commonly used in modeling of storm surge and flooding

Storm Surge Forecasting using ADCIRC

- ADCIRC Surge Guidance System (ASGS) provides forecast guidance for winds, waves and storm surge during a hurricane, especially for the coastlines of NC, LA, and TX
- Done by running ADCIRC on high performance super computers
 - Texas Advanced Computing Center (TACC) at University of Texas, LONI Network at Louisiana State University, Renaissance Computing Institute (RENCI) at University of North Carolina
- For NC Coast, ADCIRC is run twice daily during normal conditions, and four times daily during severe storms
- Different meshes are used depending on where the storm is at that point in time
- Coastal Emergency Risks Assessment (CERA) (<u>https://cera.coastalrisk.live</u>)
 - an interactive visualization tool that integrates modeled results with measured data
 - presentation of results to emergency managers, decision makers, and the scientific community

Storm Surge Forecasting using ADCIRC

Hurricane Irene, 28th Advisory

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

NC STATE

UNIVERSITY

h

13

Hurricane Matthew

- Category-5 storm
- Impacted the south-east coast of the U.S. during October 2016
- Caused 34 direct deaths and forced evacuations by 3 million people
- Shore-parallel storm
- Large variations in water levels lasting several days

Water Levels in m (NAVD88)

Methods

- ADCIRC + SWAN
- OWI Winds
- Offset Surface
- HSOFS Mesh
 - 500 m average coastal resolution
 - 1.8 million vertices

Results – Water Levels

NC STATE UNIVERSITY

Model Validation – Water Levels

241 stations, RMSE of 0.28m, Bias of 0.04

NC STATE UNIVERSITY

Model Validation – High Water Marks

17

Summary

- Even on the relatively coarse HSOFS mesh, the ADCIRC+SWAN model does a remarkable job of capturing the Matthew's impact all along the U.S. southeast coast
- The effects of storm timing and forward speed on flooding

A Thomas, *et al.* (2019). "Influence of Storm Timing and Forward Speed on Tide-Surge Interactions during Hurricane Matthew." *Ocean Modelling*, 137, 1-19, DOI:10.1016/j.ocemod.2019.03.004.

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

Motivation - Need for Higher Resolution

1) Experience from hindcasts of Hurricane Matthew

Motivation - Need for Higher Resolution

- 2) Forecasting during Hurricane Florence (2018)
 - HSOFS mesh was used when the storm was far away (up till Advisory 41)
 - As the storm approached the NC coast, NC9 mesh was employed (starting from Advisory 42)

Motivation - Need for Higher Resolution

2) Forecasting during Hurricane Florence (2018)

Motivation - Need for Higher Resolution

2) Forecasting during Hurricane Florence (2018)

Motivation - Need for Higher Resolution

2) Forecasting during Hurricane Florence (2018)

Motivation - Need for Faster Forecasts

Background and Motivation

1) Ensemble Possibilities

Introduction

Case Study

NC STATE

- For each advisory, there is uncertainty in the storm parameters, which translates directly into uncertainty in the predicted surge
- SLOSH computes Probabilistic Storm Surge in real-time
 - Includes uncertainty in track/landfall location, forward speed, intensity, and historical errors
 - Results are approximately 30 minutes after full advisory release time
- ASGS runs only a few variations (eg. veer-left, veer-right)
- Faster simulations will allow for more scenario-testing, which can help in reducing uncertainties in the forecast results (Leutbecher and Palmer, 2008)

FEMA-SAB Mesh

NC STATE

Motivation - Need for Faster Forecasts

2) Tropical Storm Bill (2015)

- Made landfall in southeast Texas
- As the storm developed in the Gulf, the CERA team prepared the high-res mesh (6.7 million elements) for the entire Texas coast
- Tidal spin-up on this mesh even on 1120 cores at TACC, took 18 hours
- By this time, the storm had already moved inland

Literature Review – Benefits of Resolution

Background and Motivation

• Required to represent

Introduction

Case Study

NC STATE

UNIVERSITY

 steep gradients in bathymetry like the continental shelf break (Westerink et al., 1992; Luettich and Westerink, 1995; Blain et al., 1998; Hagen et al., 2000)

FEMA-SAB Mesh

- wave propagation in shallow water regions (Hagen et al., 2001)
- complex topography in overland regions (Westerink et al., 2008)
- inter-tidal zones that can modify tidal propagation (Blanton et al., 2004; Bacopoulos and Hagen, 2017)
- Example Blanton et al. (2004), studied the influence of the estuary/tidal inlet complex (ETIC) on barotropic tides in the South Atlantic Bight

Open symbols – No ETIC Solution Solid symbols – ETIC solution

Literature Review – Ways to Provide Resolution

Storm surge modelling (Mandli and Dawson, 2014)

Implemented in the GEOCLAW framework (Berger et. al, 2011) for simulating Ike,

by splitting the elements during the simulation

Much faster, while capturing fine-scale features similar to ADCIRC

Current Forecasting Technique

- Save the state of the simulation right at the nowcast point (end of the hindcast)
- Reload this saved state during the next advisory cycle to avoid having to start the simulation from the beginning
- The system thus always builds on previous results
- The hot-starts have to be always done on the same mesh
- This prevents use of high resolution meshes without having to run tidal spin-up that take several hours of computational time

Objectives

- Reduce the computational load by using a coarser resolution mesh when the storm track is uncertain
- Increase the accuracy of predictions by using a higher resolution mesh as the storm approaches landfall
- Increase the simulation possibilities including ensemble generation during operational forecasting

Goal

- Coarse Resolution Mesh
 - HSOFS (1.8 million vertices)
- Fine Resolution Meshes for the U.S. Gulf and Atlantic coasts
 - Each 3-6 million vertices
 - Western Gulf 1.
 - Northern Gulf 2.
 - 3. Eastern Gulf
 - South and Central Atlantic 4.
 - 5. Northern Atlantic

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

Mesh Development

- By combining FEMA meshes
 - South FL
 - 2,249,093 nodes
 - North-east FL and GA
 - 2,968,735 nodes
 - East-central FL
 - 1,406,543 nodes
 - South Carolina
 - 542,809 nodes
 - North Carolina
 - 624,782 nodes
- HSOFS used in open-water regions

Topo-bathy

Mesh Development

Validation

Forest	FEMA-SAB			
Error	Matthew	Florence		
Stations	626	190		
Best Fit Slope	1.02	1.00		
R ²	0.76	0.91		
ERMS (m)	0.28	0.20		
B _{MN}	0.03	0.01		

Comparison to HSOFS Results

Summary

- FEMA-SAB mesh was validated for Matthew and Florence
- Predictions are better than that using HSOFS, especially inland
 - Better capture tidal signals and/or better match to peak water levels
 - Floods a greater number of observation-locations

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

Multi-Resolution Approach

- Part I Application of the approach to Hurricanes Matthew and Florence
- Part II Optimizing the approach for accuracy and efficiency during Matthew

Introduction

40

Steps and Hypothesis

Steps

- Use a relatively coarse resolution when the storm is far
- As the storm approaches the coastline, switch to a fine-resolution mesh without doing a cold-start
- Map results from coarse to the fine mesh and continue simulation on fine mesh

Hypothesis

• It is hypothesized that, by `switching' from coarse- to fine-resolution meshes, with the resolution in the fine mesh concentrated only at specific coastal regions influenced by the storm at that point in time, both accuracy and computational gains can be achieved

Adcirpolate

- A toolset for interpolating between meshes
- Developed by our collaborators (Dr. Clint Dawson, Dr. Ali Samii, Mark Loveland) at U.T. Austin
- Implemented via the Earth System Modeling Framework (ESMF)
 - Allows for parallel interpolation between unstructured meshes
- Interpolation is done bilinearly in region destination points
- Extrapolation is done for the remaining points with nearest source to destination
- Proper checks to take care of wetting/drying state of elements
- Convert the hot-start file from the coarse mesh simulation to a hot-start file for the fine mesh simulation

Test Case

- Scatter at 0.5m resolution
- Average spacing is 20m for coarse and 10m for fine mesh

Bathy-topo

Test Case

- Switching after 1 day when water levels at boundary is 1.4 m
- Total run period is 2.25 days

Test Case

44

Applying the approach during Matthew and Florence

- HSOFS when storm is far away
- FEMA-SAB when storm approaches the coastline
- Switching time understood by looking at water levels

Storm	No. of Days of Simulation			Run Date	
500111	HSOFS	FEMA-SAB	Total	Kull Date	
Matthew	4.5	4.5	9	Oct 2 – Oct 11, 2016	
Florence	3	6	9	Sept 7 – Sept 16, 2018	

Results – Global Comparisons of Flooding

• Florence as an example – difference in max water levels

to Coarse

Results – Comparison at Inland Locations

• Matthew as an example

Introduction

47

Results – Comparison to Fine Maximum Water Levels

• *Fine* results as truth

Introduction

• This allows for an evaluation of accuracy throughout the entire region, not only where the observations were collected

FEMA-SAB Mesh

• Comparison at nodes that are inland (z<10m) and wetted in both meshes

Background and Motivation

• FL to NC for Matthew, and NC for Florence

Case Study

• Mixed approach floods a larger area with gain in accuracy, as compared to *Coarse* results

Error	M	atthew	Florence		
Error	Coarse	Mixed	Coarse	Mixed	
Stations	1,981,764	2,664,921	182,289	264,812	
Best Fit Slope	0.99	1.00	0.95	1.00	
R ²	0.91	0.96	0.86	0.90	
ERMS (m)	0.22	0.13	0.22	0.18	
B _{MN}	-0.01	0.00	-0.05	0.00	

Introduction

49

Results – Performance Benefits

- Gains in efficiency in terms of wall-clock time
- All simulations for Matthew and Florence were done on the Stampede2 computing cluster at the Texas Advanced Computing Center, on a total of 532 cores (including 10 writer cores)

Storm	Mixed				Fine	% Save in
	Coarse	Adcirpolate	Fine	Total		time
Matthew	29	12	202	243	393	38
Florence	37	12	129	178	380	53

Run time in minutes

Summary

- The Mixed approach retains the accuracy of the *Fine* results, but it floods a larger region as compared to the corresponding *Coarse* simulation
- This extra flooding coverage is at regions like barrier islands, up-stream rivers, etc., where the coarse mesh does not have sufficient resolution to provide the required hydraulic connectivity
- 38 to 53% save in time without compromising on accuracy

Multi-Resolution Approach

- Part I Application of the approach to Hurricanes Matthew and Florence
- Part II Optimizing the approach for accuracy and efficiency during Matthew

Motivation

• Matthew

- Shore-parallel storm moved from south-to-north
- But it did not impact this entire region at the same time
- Southeast coast divided into 3 regions: FL, GA+SC, NC

Research Hypothesis and Objectives

• Hypothesis

NC STATE

UNIVERSITY

- By applying smaller high-resolution meshes that describe specific regions of the U.S. southeast coast as they are affected by Matthew, the predictions can be further improved in both accuracy and efficiency
- Objectives
 - Identify the optimal number of segments along the U.S. southeast coast, to represent the variation in water levels during Matthew without excessive switching between meshes
 - Evaluate the storm information available during the storm, as possible triggers for switching between meshes
 - Quantify the benefits in accuracy and efficiency of the multi-resolution approach, via comparisons with a single simulation on the FEMA-SAB mesh

FEMA-SAB Mesh

Background and Motivation

Sub-meshes were created from HSOFS using state-line boundaries

Case Study

NC STATE UNIVERSITY

Introduction

-84° -80° -76° -72°

Test on HSOFS Sub-meshes

Mesh	No. of Nodes	Days of Simulation
HSOFS	1,813,443	4.5
HSOFS_FL	804,964	0.75
HSOFS_FL+GA+SC	942,427	0.75
HSOFS_FL+GA+SC+NC	1,057,880	0.75
HSOFS_GA+SC+NC	886,565	0.75
HSOFS_NC	784,911	1.5

• Water Levels

Introduction

Introduction

Test on HSOFS Sub-meshes

• Comparison to Fine maximum water levels

• Timing Comparison

Mesh	No. of Nodes	Days	Run Time on 532 Cores (min)
HSOFS	1,813,443	4.5	34
HSOFS_FL	804,964	0.75	3
HSOFS_FL+GA+SC	942,427	0.75	3
HSOFS_FL+GA+SC+NC	1,057,880	0.75	4
HSOFS_GA+SC+NC	886,565	0.75	3 2
HSOFS_NC	784,911	1.5	6

Total = 64 mins

HSOFS for the entire storm = 67 mins

63

Simulations Using FEMA-SAB Sub-meshes

FEMA-SAB Mesh

Background and Motivation

• Creating sub-meshes

Introduction

NC STATE

UNIVERSITY

• Watershed boundary dataset from USGS

Case Study

- Hydrologic units represents regions that drain to a portion of stream network
- U.S. southeast coast South Atlantic-Gulf 'region' (03), 'sub-regions' (0301-0318)

Error Metrics

- Accuracy
 - E_{RMS}, B_{MN}, R², *m*
- Efficiency
 - Actual Speedup $S_{actual} = \frac{T_{fine}}{T_{mixed}}$
 - Theoretical Speedup $S_{theoretical} = \frac{NT}{\sum_{i=1}^{n} N_i T_i}$
 - T_{fine} is the total wall-clock time for the *Fine* simulation in days
 - T_{mixed} is the total wall-clock time for the approach including the times for switching in days
 - *N* is the number of vertices in the Fine mesh
 - *T* is the total days of Fine simulation
 - n is the number of component meshes used in the approach
 - *N*_iand *T*_iare the number of vertices and days of simulation for the component meshes

Simulations Using FEMA-SAB Sub-meshes

- 1. FEMA-SAB_{ACC}
 - aimed at getting maximum accuracy out of the approach
 - 1.1 times the tidal maxima was used as trigger to add or remove regions

Mesh	Vertices	Days
HSOFS	1,813,443	3
WSB ₃₀₉₊₃₀₈	3,813,463	1.5
WSB ₃₀₉₊₃₀₈₊₃₀₇₊₃₀₆	5,013,281	0.75
WSB ₃₀₉₊₃₀₈₊₃₀₇₊₃₀₆₊₃₀₅₊₃₀₄	5,263,482	0.75
FEMA-SAB	5,584,241	0.75
WSB ₃₀₇₊₃₀₆₊₃₀₅₊₃₀₄₊₃₀₃₊₃₀₂₊₃₀₁	3,229,413	0.75
WSB ₃₀₄₊₃₀₃₊₃₀₂₊₃₀₁	1,853,662	1.5

Simulations Using FEMA-SAB Sub-meshes

- 2. FEMA-SAB_{OPT}
 - aimed at an optimum prediction of water levels (both accuracy and performance)
 - 1.2 times the tidal maxima was used as trigger to add or remove regions

Mesh	Vertices	Days
HSOFS	1,813,443	3
WSB ₃₀₉	2,803,323	2
WSB ₃₀₉₊₃₀₈₊₃₀₇₊₃₀₆₊₃₀₅	5,181,167	1
WSB ₃₀₇₊₃₀₆₊₃₀₅₊₃₀₄	2,910,982	0.25
WSB ₃₀₆₊₃₀₅₊₃₀₄	2,246,580	0.25
WSB ₃₀₆₊₃₀₅₊₃₀₄₊₃₀₃₊₃₀₂₊₃₀₁	2,565,008	0.5
WSB ₃₀₂₊₃₀₁	1,681,994	2

Simulations Using FEMA-SAB Sub-meshes

- 3. FEMA-SAB_{EFF}
 - aimed for maximum efficiency
 - 1.4 times the tidal maxima was used as trigger to add or remove regions

Mesh	Vertices	Days
HSOFS	1,813,443	4.5
WSB ₃₀₉	2,803,323	0.5
WSB ₃₀₈	2,471,130	0.5
WSB ₃₀₈₊₃₀₇₊₃₀₆	3,670,946	0.5
WSB ₃₀₆₊₃₀₅	2,164,263	0.5
WSB ₃₀₅₊₃₀₄₊₃₀₃	1,808,744	0.25
WSB ₃₀₄₊₃₀₃	1,632,726	0.25
WSB ₃₀₂₊₃₀₁	1,681,994	2

Simulations Using FEMA-SAB Sub-meshes

Simulations Using FEMA-SAB Sub-meshes

Simulations Using FEMA-SAB Sub-meshes

Simulations Using FEMA-SAB Sub-meshes

Simulations Using FEMA-SAB Sub-meshes

• Results - Maximum water levels

Simulations Using FEMA-SAB Sub-meshes

• Results – Comparison to *Fine* water levels

Error	FEMA-SAB _{ACC}	FEMA-SAB _{OPT}	FEMA-SAB _{EFF}	
Stations	2,665,697	2,618,907	2,571,024	
Best Fit Slope	1.00	0.96	0.95	
R ²	0.98	0.96	0.94	
ERMS (m)	0.08	0.15	0.18	
B _{MN}	-0.003	-0.050	-0.070	

Simulations Using FEMA-SAB Sub-meshes

• Results – Wall-clock times

Error	Time in minutes						
	Fine	Approach			Save in time (%)	S _{actual}	S _{theoretical}
		ADCIRC	Adcirpolate	Total			
FEMA-SAB _{ACC}	393	215	64	279	29.01	1.41	1.78
FEMA-SAB _{OPT}	393	153	50	203	48.35	1.94	2.27
FEMA-SAB _{EFF}	393	107	45	152	61.32	2.59	2.80

Summary

- The approach was the applied to three simulations of Matthew with sub-meshes created out the FEMA-SAB mesh using watershed boundaries as guidelines
- Different levels of accuracy and efficiency can be achieved out of the multi-resolution approach, by using different combinations of smaller high-resolution meshes
- By targeting only the major peaks in the total water levels, maximum efficiency (61%) can be achieved, although this would compromise on accuracy at different locations

Outline

- Introduction
- Case Study
- Background and Motivation
- FEMA-SAB Mesh Development and Validation
- Multi-Resolution Approach
- Summary and Conclusion

Summary and Conclusion

Case-Study

• The ADCIRC+SWAN model does a remarkable job of capturing Matthews's impacts even when applied on the relatively coarse HSOFS mesh

FEMA-SAB Mesh

Introduction

- Developed by merging five FEMA regional meshes onto an open-water mesh
- 5,584,241 vertices and 11,066,018 elements (3 times that of the HSOFS mesh)
- Resolution is less than 100 m along the U.S. southeastern coastline at most locations
- Validation for Hurricanes Matthew and Florence indicate the FEMA-SAB mesh outperforming the HSOFS mesh especially at inland locations

NC STATE

79

Summary and Conclusion

Multi-Resolution Approach

- Allows switching from a coarse- to a fine-resolution mesh during a simulation without having to do a cold-start
- The approach was applied during Hurricanes Matthew and Florence, and results indicated gains in accuracy and efficiency as compared to results from single simulations on coarse-and fine-resolution meshes
- Instead of using just one switch between the coarse HSOFS mesh and the fine FEMA-SAB mesh, multiple smaller higher resolution meshes can be used to further improve efficiency gains
- Different levels of accuracy and efficiency can be achieved out of the multi-resolution approach, by using different combinations of smaller high-resolution meshes

Summary and Conclusion

Future Work

- Improve stability of the FEMA-SAB mesh without using restrictive attributes
- Add NetCDF capabilities
- Extend it to SWAN model
- Automation

Thank You!