Using a Multi-Resolution Approach to Improve the Accuracy and Efficiency of Flooding Predictions

Ajimon Thomas¹, J.C. Dietrich¹,

C.N. Dawson², M. Loveland²

¹Civil, Construction and Environmental Engineering, North Carolina State University ²Institute of Computational Engineering and Sciences, UT Austin

Motivation

- Need for Higher Resolution
 - 1. Experience from hindcasts of Hurricane Matthew (2016)
 - HSOFS mesh with an average coastal resolution of 500 m
 - 622 peaks analyzed. R² = 0.78, RMSE = 0.28m, Bias = -0.03, Best fit slope = 0.96

Motivation

- Need for Higher Resolution
 - 2. Forecasting during Hurricane Florence (2018)
 - HSOFS mesh used when the storm was far away (up till Advisory 41)
 - NC9 mesh was employed (starting from Advisory 42) as storm approached NC coast
- Need for Faster Forecasts
 - **Ensemble Possibilities**
 - For each advisory, there is uncertainty in the storm parameters
 - ASGS runs only a few variations (eg. veer-left, veer-right)
 - Faster simulations will allow for more scenario-testing

Maximum water levels corresponding to Advisory 58

Goals and Objectives

Main Objectives

- Reduce the computational load by using a coarser resolution mesh when the storm track is uncertain
- Increase the accuracy of predictions by using a higher resolution mesh as the storm approaches landfall
- Increase the simulation possibilities including ensemble generation during operational forecasting

Goals and Objectives

Goal

- Coarse Resolution Mesh
 - HSOFS (1.8 million vertices)
- Fine Resolution Meshes for the U.S. Gulf and Atlantic coasts
 - Each 3-4 million vertices
 - 1. Western Gulf
 - 2. Northern Gulf
 - 3. Eastern Gulf
 - 4. South and Central Atlantic
 - 5. Northern Atlantic

Mesh Development

- By combining FEMA meshes
 - South FL
 - 2,249,093 nodes
 - North-east FL and GA
 - 2,968,735 nodes
 - East-central FL
 - 1,406,543 nodes
 - South Carolina
 - 542,809 nodes
 - North Carolina
 - 624,782 nodes
- HSOFS used in open-water regions

Mesh Development

- Nodal Attributes
 - 1. Eddy viscosity
 - 2. Tau0
 - 3. ManningsN
 - 4. z0Land
 - 5. VCanopy
 - 6. elemental_slope_limiter
 - 7. advection_state

Mesh Development

• 5,641,135 nodes

Results

Maximum Water Levels 36° 35° 34° 33° -78° -74° -77 -76° -75°

Hurricane Matthew (2016)

9

m 2.5

2.0

- 1.5

1.0

0.5

0.0

Hurricane Florence (2018)

Results

• Time Series of Water Levels

Results

• Time Series of Water Levels

Observation

Validation

Steps

- Use a relatively coarse resolution when the storm is far
- As the storm approaches the coastline, switch to a fine-resolution mesh **without doing a cold-start**
- Map results from coarse to the fine mesh and continue simulation on fine mesh

Adcirpolate

- A toolset for interpolating between meshes
- Developed by our collaborators at U.T. Austin
- Implemented via the Earth System Modeling Framework (ESMF)
 - Allows for parallel interpolation between unstructured meshes
- Interpolation is done bilinearly in region destination points
- Extrapolation is done for the remaining points with nearest source to destination
- Proper checks to take care of wetting/drying state of elements
- Convert the hot-start file from the coarse mesh simulation to a hot-start file for the fine mesh simulation

Test Case

- Scatter at 0.5m resolution
- Average spacing is 20m for coarse and 10m for fine mesh

Test Case

- Switching after 1 day when water levels at boundary is 1.4 m
- Total run period is 2.25 days

NC STATE UNIVERSITY

The Multi-Resolution Approach

Coarse

54

54

54

17

Mixed

Test Case

- HSOFS when storm is far away
- High-res mesh when storm approaches the coastline
- Switching time understood by looking at water levels

Storm	No. of Days of Simulation			Run Date
	HSOFS	High-Res	Total	
Matthew	4.5	4.5	9	Oct 2 – Oct 11, 2016
Florence	3	6	9	Sept 7 – Sept 16, 2018

Applying the approach during Matthew and Florence

• Matthew – Max. Water Levels

Applying the approach during Matthew and Florence

• Florence – Max. Water Levels

Applying the approach during Matthew and Florence

• Matthew – Time Series at Inland Locations

21

Applying the approach during Matthew and Florence

• Florence – Time Series at Inland Locations

22

- Analysis
 - Accuracy Comparison
 - Observations as truth
 - No loss in accuracy

Error	Matthew		Florence		
Error	Mixed	Fine	Mixed	Fine	
Stations	580	580	190	190	
Best Fit Slope	0.93	0.93	0.95	0.95	
R ²	0.77	0.78	0.88	0.91	
ERMS (m)	0.29	0.29	0.26	0.22	
B _{MN}	-0.06	-0.07	-0.06	-0.05	

- Analysis
 - Accuracy Comparison
 - Fine Mesh Results as truth
 - Comparison at nodes that are inland (z<10m) and wetted in both meshes
 - Mixed approach wets more nodes with gain in accuracy

Error	M	atthew	Florence		
Error	Coarse	Mixed	Coarse	Mixed	
Stations	1,981,764	2,664,921	182,289	267,766	
Best Fit Slope	0.99	1.0	0.95	1.0	
R ²	0.91	0.96	0.86	0.96	
ERMS (m)	0.22	0.13	0.22	0.11	
B _{MN}	-0.014	-0.002	-0.051	0.004	

- Analysis
 - Run Time Comparison
 - 24 to 33 % save in time without compromising on accuracy (comparison to observations)

	Run Time in minutes					
Storm		Fine				
	Coarse	Adcirpolate	Fine	Total		
Matthew	29	12	222	263	393	
Florence	19	12	259	290	380	

Future Work

- Utilize Watershed boundaries to create sub-meshes from the high-resh mesh
 - Use different sub-meshes (instead of 1 big high-res mesh) depending on where the storm is at that point in time
 - Should save more time
- Explore other factors to use as triggers for switching

Thank You