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Abstract: Missing building attributes are problematic for development of data-based fragility models. Relative to other disciplines, the
application of imputation techniques is limited in the field of engineering. Current imputation techniques to replace missing building
attributes lack evaluations of imputation model performance, which ensure accuracy and validity of the imputed data. This paper presents
two imputation approaches, along with imputation diagnostic and comparison approaches, for binary building attribute data with missing
observations. Predictive mean matching (PMM) and multiple imputation (MI) are used to impute foundation type and number of stories
attributes. The diagnostic approach, based on the logistic regression goodness-of-fit test, is used to evaluate the imputation model fit. The
comparison approach, based on the percentage of correctly imputed observations, is used to evaluate the imputation model performance.
A data set of single-family homes damaged by the 2005 Hurricane Katrina is used to demonstrate implementation of the methodology. Based
on the comparison approach, PMMmodels showed 9% and 2% greater accuracy than MI models in imputing foundation type and number of
stories, respectively. DOI: 10.1061/(ASCE)CF.1943-5509.0001433. © 2020 American Society of Civil Engineers.
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Introduction

Missing data come hand-in-hand with data themselves and occur in
virtually all areas of research, often resulting in a nontrivial effect
on data-based conclusions (Ferrari et al. 2011). Yet, relative to other
disciplines, the application of techniques to replace missing data
is not as common in the field of fragility modeling. Traditionally,
fragility models relate hazard intensities (e.g., wind speed or
inundation depth) and building attributes (e.g., foundation type
or number of stories) to physical damage and are used for either
assessment or prediction of damage. The model accuracy is highly
sensitive to the quality of the data (e.g., hazard data or building
attributes) used to develop the model. Although hazard data can
be simulated using advanced modeling such as Simulating Waves
Nearshore and Advanced Circulation (SWAN + ADCIRC), build-
ing attributes are sometimes difficult to collect due to the lack
of detailed tax records, exclusion of old houses from tax recodes,
and severity of the storm. With the lack of prestorm and poststorm
building attributes, missing building attributes become a very

common issue, which may have a significant effect on the conclu-
sion drawn from the data set. Although missing data are a common
issue, approaches for accommodating missing data are limited
to complete case analysis, where the missing observations are ex-
cluded from the data set and only the complete case is used for
further analysis.

When complete case analysis is used, fragility models are de-
veloped with data that do not consider the full range of buildings.
This causes the loss of valuable information, results in reduction of
a sample size, and leads to biased estimates of model coefficients.
A better and valid approach to accommodate missing data is im-
putation, which simply put is a process of replacing missing data
with substituted values by estimating the association between all of
the variables in the model, finally filling in (imputing) reasonable
guesses for the missing values. Imputation studies are a relatively
more active research area in medical and social science fields than
in the engineering field and are more powerful than complete case
analysis in imputing missing data. Because imputation techniques
preserve sample size, they are generally viewed as the preferred
analytical approach over complete case analysis. For this reason,
many imputation techniques are developed to make gap end.
Imputation techniques such as imputation with mean, median, and
mode are simple techniques for imputing numerical and categorical
variables with missing observations, but like complete case analy-
sis, the techniques generally introduce bias and ignore relationship
with other variables in the data set.

Model-based imputation techniques such as multiple imputation
(MI) and predictive mean matching (PMM) are more powerful
techniques than complete case analysis and simple imputations
techniques. MI is practical and widely applicable technique, and
it has a variety of usages for continuous and categorical data
with monotone and arbitrary missing patterns. The technique is
better suited to highlight the uncertainties about the missing value
estimates by creating several different imputed data sets and
appropriately combining results obtained from each of them.
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Valid inferences are obtained because the technique averages over
the distribution of the missing data given the observed data (Little
and Rubin 2014). On the other hand, PMM is an easy-to-use im-
putation technique for continuous and categorical data and is based
on other observed observations in the data set, so the imputed val-
ues are more realistic. Imputations outside the observed data range
will not occur, thereby avoiding problems with meaningless impu-
tations resulting from extrapolation. Because the technique relies
on other observed in the data set, there is no need to define the
distribution of missing values. Consequently, predictive mean
matching is less vulnerable to model misspecification (Little and
Rubin 2014).

In the field of data-based fragility modeling, implementation of
imputation techniques is very limited. Imputation techniques are
particularly important for data collected after natural hazard events
because building attribute data may not be fully observed due to
severity of damage. Pita et al. (2011) used Bayesian belief networks
(BBN) and classification and regression trees (CART) machine-
learning methods to classify roof shape as a function of wall type,
year built, roof cover type, number of stories, and building value.
Performance of the BBN and CART were then evaluated using
cross validation. Macabuag et al. (2016) used MI techniques to im-
pute building material attributes as a function of footprint area,
damage state, building use, and inundation depth. However, perfor-
mance of the imputation models was not evaluated.

Although results of the previous two studies aided in develop-
ment of risk and fragility models, building attributes were either
imputed based on machine-learning techniques rather than impu-
tation techniques (Pita et al. 2011), or based on imputation tech-
niques without evaluation of the imputation model performance
(Macabuag et al. 2016). In other disciplines, it has been shown that
evaluation of imputation model performance is essential to ensure
validity and accuracy of the imputed data (Bernhardt 2018; Cabras
et al. 2011; Gelman et al. 2005; Nguyen et al. 2017) and to provide
an approach for model comparison and selection among various
imputation models (Fay 1996; Meng 1994).

When an individual imputation model is evaluated, model diag-
nostics are performed numerically or graphically to determine how
well the model estimates missing values. When various imputation
models are evaluated, model comparison is performed numerically
to determine the model or models with the highest imputation
accuracy. Current numerical diagnostic approaches are limited to
imputation models for continuous variables (e.g., Abayomi et al.
2008; Farhan and Fwa 2014; Stuart et al. 2009; Van Buuren 2012;
White et al. 2011; Zhu et al. 2009), whereas comparison approaches
are limited to evaluation of the performance of statistical models fit
on the imputed data set rather than imputation models themselves
(e.g., Akande et al. 2017; Collins et al. 2001; Raghunathan et al.
2001). An approach for implementing diagnostic and comparison
approaches for evaluating the fit and accuracy of imputation models
for categorical variables (e.g., building attributes) is essential to
improve the quality of postevent data, and therefore, improve the
prediction of the data-based fragility model.

This paper presents an imputation approach, along with impu-
tation diagnostic and comparison approaches, for binary building
attribute data with missing observations. Binary building attributes
with missing observations are imputed by fitting PMM and MI
logistic regression–based imputation models on the complete case
data set with the selected building attribute as the response variable
and observed numerical hazard and environmental attribute varia-
bles as explanatory variables. The diagnostic approach is used to
numerically diagnose the fit of each individual logistic regression
imputation model and to determine the subset of the variables to be
used in the analysis. The model choice was based on the following

three criteria: (1) the logistic regression goodness-of-fit test, (2) the
significance of the observed numerical variables, and (3) the inde-
pendence of the observed numerical variables.

The comparison approach is used to numerically evaluate the
performance of the imputation models themselves. More specifi-
cally, observations from the complete data sets of every building
attribute are randomly deleted to accomplish a missingness percent-
age equal to that in the original data set. The deleted observations
are then imputed based on the diagnosed PMM and MI imputation
models. The percentage of correctly classified observations, ex-
pressed as the cross-classification rate (CCR), is calculated by com-
paring prior and postdeletion values. For every building attribute,
the imputation model with the highest CCR and lowest class error
(CE) is chosen as the final imputation model.

A data set of single-family homes damaged by 2005 Hurricane
Katrina in coastal Mississippi is used to demonstrate application of
the methodology. Data for foundation type and number of stories
were missing for about 45% of the buildings destroyed by Katrina.
The observed numerical hazard and environmental variables, de-
fined as maximum 3-s wind speed, maximum significant wave
height, maximum water depth, maximum water speed, and base
flood elevation, are used to impute missing foundation type and
number of stories data for slab and elevated foundations of 1- and
2-story homes. Hazard intensities and the base flood elevation were
obtained from joint SWAN + ADCIRC and FEMA Flood Map
(FEMA 2020; Dietrich et al. 2012) Service Center flood insurance
rate maps (FIRMs), respectively.

The contributions of this paper are approaches to impute binary
building attributes based on imputation techniques rather than stat-
istical techniques, diagnose the fit of individual imputation models,
and evaluate the performance of the imputation models rather than
the performance of statistical models fit on the imputed data set. A
major issue for damage modelers and data collectors is the imple-
mentation of techniques to impute building attributes with missing
observations because of the lack of knowledge transfer between the
disciplines of statistics and engineering. The developed approaches
provide damage modelers and data collectors with the knowledge
needed to impute binary building attributes and to evaluate the fit
and performance of the imputation models themselves. Implemen-
tation of imputation techniques improves quality of postevent data
because building attribute data may not be fully observed due to the
severity of damage or lack of data; meanwhile, implementation of
evaluation approaches ensures validity of the imputation models,
which is an improvement over current building attribute imputation
practices that lack evaluation of imputation model performance.

Missing Data Imputation: Notation, Models,
and Details

For a data set with sample size N, G binary (i.e., Levels 0 and 1)
explanatory variables ðX1;X2; : : : ;XGÞ with missing observations,
and F continuous explanatory variables ðZ1;Z2; : : : ;ZFÞ, two
model-based imputation techniques T ¼ ðTPMM;TMIÞ, defined as
PMM and MI, are applied to impute each Xg with missing obser-
vation. For each variable Xg with missingness, sample sizes for the
complete and missing case subdata sets are Ng;cc and Ng;miss, re-
spectively, where Ng ¼ Ng;cc þ Ng;miss. Variables of these subdata
sets are defined as Xg;cc, Zf;cc, Xg;miss, and Zf;miss, where
g ¼ 1; 2; : : : ;G, f ¼ 1; 2; : : : ;F, the subscript cc denotes observa-
tions of fully observed Xg, and the subscript miss denotes obser-
vations with missing Xg values. The missing mechanism of the data
set is assumed to be missing at random (MAR), meaning that the
probability of missing Xg values depends only on the observed
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variables in the data set. Based on T, a set of two logistic
regression-based imputation models LRg ¼ ðLRg;PMM;LRg;MIÞ is
fitted on the Ng;cc complete cases. The response variable of LRg

is Xg, and the explanatory variables are the continuous explanatory
variables ðZ1;Z2; : : : ;ZFÞ.

Predictive Mean-Matching Imputation Techniques

For the predictive mean-matching imputation technique, TPMM,
the imputation procedure imputes a missing value by matching
its estimated predictive probability to the nearest complete case
estimated predictive probability. A logistic regression model
LRg;PMM is fitted on the complete cases for each XG with missing
observations

ln

�
PðXg;cc ¼ 1Þ

1− PðXg;cc ¼ 1Þ
�
¼ αg0 þ

XF
f¼1

αgfZf;cc for g ¼ 1; 2; : : : ;G

ð1Þ
where PðXg;cc ¼ 1Þ = probability of Xg;cc being in Level 1; αg0 =
model intercept; and αgf = model coefficients.

For each complete case observation xg;cc of variable XG, the es-
timated predictive probability that xg;cc with explanatory variables
Zf;cc belongs to Level 1 is estimated as follows:

Pðxg;cc ¼ 1Þ ¼ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

1þ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

ð2Þ

For each missing observation xg;miss of variable XG, the esti-
mated predictive probability that xg;miss with explanatory variable
Zf;cc belongs to Level 1 is estimated as follows:

Pðxg;miss ¼ 1Þ ¼ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

1þ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

ð3Þ

The absolute difference jDgj between Pðxg;miss ¼ 1Þ and every
Pðxg;cc ¼ 1Þ is calculated and used to construct a distance matrixQ
with number of rows representing the number of complete cases
and number of columns representing the number of missing cases.
For every column in Q, xg;miss is set equal to the xg;cc value cor-
responding to the row with the smallest jDgj value. For rows with
equal jDgj values, xg;miss is selected as the mode of the correspond-
ing xg;cc values unless the variable levels are equally represented,
in which case, xg;miss is selected at random.

Multiple Imputation Techniques

The application of multiple imputation techniques, TMI, is depen-
dent on the missingness pattern, i.e., arbitrary or monotone. For the
arbitrary missingness pattern, MI using fully conditional specifica-
tion (FCS) is used, whereas MI using logistic regression is used
for the monotone missingness pattern. A data set with variables
X1;X2; : : : ;Xg has a monotone missingness pattern if variable
Xj and all previous variables Xk, k < j, are observed and Xjþ1

and all subsequent variables Xm,m > j, are missing for observation
i; otherwise, the data set has an arbitrary missingness pattern. The
imputation procedure for TMI generates Mg imputations by per-
forming draws from the predictive posterior distribution(s) of Xg;cc

conditioned on Zf;cc. The number of required imputations Mg de-
pends on the fraction of missing data λg (Rubin 1978) and is de-
termined by the relative efficiency index RE ¼ ½1þ ðλg=MgÞ�−1,
where Rubin (1978) precalculated values of RE based on fractions

of missing data (λ) and number of imputations (m) to determine the
number of required imputations. A value of Mg is chosen so that
REg is greater than 90%. The imputation algorithm sequentially
iterates through the variables to impute the missing values using
LRg;MI fitted on the complete cases Eq. (1).

For each Xg, model coefficients are randomly drawn from a
multivariate normal distribution with mean and variance equal to
the model coefficients of Eq. (1). This procedure results in Mg lo-
gistic regression models, Mg model intercepts, and Mg × F model
coefficients, and hence, Mg imputed data sets. Intercepts and co-
efficients for each model are different and collectively defined
as αg. Statistical analysis is then performed on theMg imputed data
sets resulting in Mg statistical model coefficients. Values of the Mg

coefficients are pooled into a final result by averaging the coeffi-
cient values. Although generating Mg imputed data sets ensures
variability in the imputed data set without biasing estimates, pool-
ing the statistical model coefficients results in one set of final stat-
istical model coefficients rather than one set of final imputation
model coefficients.

For this study, pooling is performed on theMg imputation model
coefficients rather than on the Mg statistical model coefficients.
This procedure results in one final imputed data set while maintain-
ing variability in the imputed data set. For each Xg, imputation
models are fitted Mg times based on Eq. (1). The intercepts and
coefficients obtained from Eq. (1) are pooled by averaging over
the Mg imputations to calculate the average estimated intercepts

and model coefficients αg, as αg ¼ ð1=MgÞ
PMg

mg¼1 αmg where αmg

is the estimate of αg in the mgth model. Thus, the imputation model
LRg;MI is redefined as follows:

ln

�
PðXg;cc ¼ 1Þ

1− PðXg;cc ¼ 1Þ
�
¼ αg0 þ

XF
f¼1

αgf Zf;cc for g ¼ 1;2; : : : ;G

ð4Þ

The model defined in Eq. (4) is used as the MI imputation model
rather than that defined in Eq. (1). The estimated predictive prob-
ability that an individual missing observation xg;miss belongs to
Level 1 is calculated

Pðxg;miss ¼ 1Þ ¼ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

1þ expðαg0 þ
P

F
f¼1 αgfZf;ccÞ

ð5Þ

If Pðxg;miss ¼ 1Þ is greater than 0.5, the missing observation is
imputed as Level 1; otherwise, it is imputed as Level 0.

Imputation Model Diagnostic and Comparison
Approaches

As with any model-based procedure, the fit of the model should
be checked using goodness-of-fit tests (Abayomi et al. 2008),
and the subset of the variables to be used in the analysis should
be determined (Collins et al. 2001). The model diagnostic approach
is used to evaluate the fit of the imputation models and to determine
the subset of the variables, based on three criteria defined as
follows:
• Satisfaction of variable inflation factor (VIF): the VIF for Zf is

given as VIFf ¼ 1=ð1 − R2
fÞ, where R2

f is the coefficient of de-
termination for a multiple regression model, considering Zf is
the dependent variable and the remaining Zf variables are the
independent variables. A VIFf greater than 10 indicates that Zf
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is almost a perfect linear combination of other explanatory vari-
ables (i.e., multicollinearity); therefore, the standard errors of
the model coefficients will be inflated. Any correlated variables
ðZf;corrÞ are not included simultaneously within PMM and MI
imputation models.

• Satisfaction of model requirements (goodness of fit): the
Hosmer and Lemeshow test is used to assess goodness of
fit based on the chi-square test. Any imputation model with
chi-square p-value <0.05 is rejected.

• Statistical significance of model parameters: at least one expla-
natory variable must be significant or the imputation model is
rejected.
For each Xg and each imputation technique, logistic regression

models are fitted on every combination of Zf, resulting in two
sets of ð2Zf − 1Þ −D ¼ K imputation models [e.g., LRgMI ¼
ðLRgMI;1; : : : ;LRgMI;KÞ� where each LRgMI has Mg imputations.
D is the number of models with Zf;corr. The three criteria defined
previously are used to evaluate the 2K models. Models satisfying
the three criteria are further evaluated based on the following com-
parison approach.

From the Ng;cc complete cases, missing values are randomly
generated by deleting observations of Xg;cc so that the percentage
of missingness for Xg;cc equals that of Xg in the original data set.
The deletion procedure results in G sample data sets with sizes Ngs ,
and variables Xgs and Zfs with complete and deleted cases defined
as Xgs;cc and Xgs;mis, respectively. Deleted observations xgs;miss are
imputed using the imputation models defined for TPMM [Eq. (1)]
and TMI [Eq. (4)], respectively. For every LRg that satisfies the
three criteria, an error matrix is constructed, where the sum of
all frequencies in the matrix is Ngs . Rows (j) of the matrix re-
present the frequency of the observed class levels for Xgs;miss

prior to deletion, and columns (e) represent the frequency of the
imputed class levels. The percentage of correctly imputed values,
expressed as the cross-classification rate (CCRLRg

), is calculated as
follows:

CCRLRg
¼

P
2
j¼1 wLRg ;jjP

2
j¼1

P
2
e¼1 wLRg;je

ð6Þ

where wLRg;jj = number of correctly classified observations found
along the diagonal of the error matrix; and the denominator is equal
to NgS . The percentage of each misclassified class, expressed as
CE, is calculated as CELRg

¼ 1 − wLRg;jj=
P

2
e¼1 wLRg;je. Balance

between CCR and CE is used to choose the final imputation model,
where models with high CCR values but high CE values are
considered less reasonable models for imputing binary variables
with missing observations.

Case Study: Hurricane Katrina

A data set containing observations describing hazard intensities and
building attributes for N ¼ 866 single-family homes in the three
counties of coastal Mississippi (Hancock, Harrison, and Jackson)
that border the Gulf of Mexico is used for the application of the
methodology. These homes ranged in damage from no damage/
very minor damage to collapse (Massarra et al. 2019). The continu-
ous variables (ZF) are maximum 3-s gust wind speed (U3;max),
maximum significant wave height (HS;max), maximum water depth
(Dmax), maximum water speed (Umax), and base flood elevations
(XBFE). All hazard intensities represent the maximum values of the
time series obtained from the tightly coupled SWAN + ADCIRC
models (Dietrich et al. 2012) after 2005 Hurricane Katrina. SWAN
represents the wave field as a phase-averaged spectrum (Booij et al.
1999). SWAN was extended in its functionality (Zijlema 2010) and
then coupled tightly with ADCIRC, which solves modified forms
of the shallow-water equations for the evolution of the total water
depth H ¼ hþ ζ, where h is the local bathymetry and ζ is the free-
surface elevation relative to the geoid, and the depth-averaged cur-
rent velocities U and V (Luettich and Westerink 2004; Westerink
et al. 2008). These models are coupled tightly so information is
passed through local memory, efficient on high-performance com-
puting systems, and validated for hurricane wave and flooding ap-
plications along the US Atlantic and Gulf coastlines (Dietrich et al.
2012). SWAN+ADCIRC uses unstructured mesh with triangular
finite elements, which can vary in size, ranging from kilometers
in open water, to hundreds of meters near the coastline and through
the floodplains, and to tens of meters in the small-scale natural and
artificial channels that convey surge into the inland region.

The model results in this study were computed on the SL16
mesh, which was developed and validated for the devastating Gulf
hurricanes of 2005 and 2008 (Dietrich et al. 2012). Data for variable
XBFE were obtained from the FEMA Flood Map Service Center
flood insurance rate maps (FIRMS) for Hancock (1983, 1987, and
1992), Harrison, (1980, 1983, 1984, 1988, and 2002), and Jackson
(1983, 1987, and 1992) counties, respectively. The flood maps were
georeferenced in ArcGIS (version 10.1), and XBFE values were re-
corded at building footprint locations. The binary variables with
missing data (XG) are foundation type (FT) and number of stories
(NS), where the two levels are defined as (slab, elevated) and (1-story,
2-story). Because of the differences in hazard intensities across
counties, it is not optimal to use a single county’s imputation model
to impute FT and NS in other counties because this may result in a
low accuracy of the imputation model. Therefore, imputation models
were fitted on a county scale. Table 1 describes the explanatory var-
iables Zf and the response variable Xg of the imputation models.

Frequency and percentage of observed (η) or missingness (λ) for
XFT and XNS are given in Table 2. The data were evaluated to de-
termine the missingness patterns, which were found to be arbitrary

Table 1. Explanatory and response variables used to construct the imputation models in Hancock, Harrison, and Jackson Counties

Variable Symbol Description

Range (continuous) or levels (binary)

Hancock Harrison Jackson

Zf U3;max Maximum 3-s gust wind speed (m=s) 48.57–67.99 55.32–67.42 47.62–62.54
HS;max Maximum significant wave height (m) 0.3–3.22 0–2.22 0–1.84
Dmax Maximum water depth above local ground level (m) 0.94–7.94 0–5.96 0–5.18
Umax Maximum water speed (m=s) 0.18–2.8 0–1.06 0–1.45
XBFE Base flood elevation (m) 0.35–5.23 0.34–4 0.32–4.31

Xg XFT Foundation type Slab (0), elevated (1) Slab (0), elevated (1) Slab (0), elevated (1)
XNS Number of stories 1-story (1), 2-story (0) 1-story (1), 2-story (0) 1-story (1), 2-story (0)
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for the three data sets in the three counties of the study area. Using
a relative efficiency index RE > 90%, the number of required im-
putations Mg for TMI for XFT and XNS was calculated as 10 in
Hancock and Harrison and as 5 in Jackson. Correlation between
HS;max and Dmax was found to be high, which results in VIFHS;max

and VIFDmax
> 10. Therefore, HS;max and Dmax were not included

simultaneously in the same imputation models.

Case Study Imputation Model Diagnostics

For each imputation technique and each county, combinations of
explanatory variables were used to fit the logistic regression models
(LR), resulting in 138 models. These models are described with
HS;max, Dmax, Umax, and XBFE variables and are tested to satisfy
the three diagnostic criteria. Among the 138 models, 33 LR models
described in Table 3 satisfied the three diagnostic criteria and were
used to impute XFT and XNS. Cells with a letter X indicate the var-
iables that are included in each LR model, where K represents the
model number.

From the complete case subdata sets of XFTs
and XNSs in each

county with sample sizes NFT;cc equal to (95, 216, 191) and NNS;cc

equal to (41, 199, 232), three sample data sets with sample sizes
Ngs were constructed by randomly deleting observations. The
observations are deleted so that NFTs

was equal to (46, 93, 71)
and NNSs was equal to (32, 94, 53), which represent equivalent
missingness percentages (λ) in each county defined in Table 2. The
procedure was repeated 1,000 times, and the mean error was
reported.

The frequency and percentage of observed and missing (λ) cases
for XFTs

and XNSs in the three subdata sets are given in Table 4. The
Xgs deleted observations for XFTs

and XNSs were imputed based on
the LR models defined in Table 3.

Case Study Imputation Model Comparison

Among the models defined in Table 3 and for each T and each Xg,
one imputation model LR with the highest CCR and the lowest CE
was chosen. Error matrix values for LR obtained from TPMM and
TMI are provided for XFT and XNS in Table 5. Rows of the matrices
represent the frequency of slab, elevated foundation, and one and
two stories prior to deletion, and columns represent the frequency
of the imputed binary variable levels after deletion.

The results show that in general the performance of PMM im-
putation models is higher than that of the MI imputation models,
with CCR ranging from 60% to 93%. For XFT, TPMM Models 13
and 24 have higher CCRLRFT

and lower CELRFT
than TMI Models 2

and 24 in Hancock and Jackson counties, whereas TMI Model
25 has higher CCRLRFT

and lower CELRFT
than TPMM Model 22

Harrison county. For XNS, TPMM Models 11, 31, and 10 have higher
CCRLRNS

and lower CELRNS
than TMI Models 15, 32, and 28 in the

three counties of the study area. Based on the CCR and CE values,
final imputation models, bold in Table 5, are defined for XFT and
XNS in each county of the study area.

Eqs. (7) and (9) define final TPMM imputation models (Models
13 and 24) for foundation type in Hancock and Jackson Counties,
respectively, and Eq. (8) defines the final TMI imputation model
(Model 25) for foundation type in Harrison County. These models
estimate the probability that buildings with missing foundation data
have elevated foundations

ln

�
PðXFT ¼ ElevatedÞ

1 − PðXFT ¼ ElevatedÞ
�

¼ −6.14þ 1.83Dmax − 2.84Umax

ð7Þ

ln

�
PðXFT ¼ ElevatedÞ

1 − PðXFT ¼ ElevatedÞ
�

¼ 0.37 − 0.26Dmax þ 0.6XBFE ð8Þ

Table 3. Model (K) with variables that satisfied the three criteria for XFT
and XNS for both TPMM and TMI

K U3;max HS;max Dmax Umax XBFE

1 X — X X X
2 X X — X X
3 X — X X —
4 X X — X —
5 X — — X X
6 — — X X X
7 — X — X X
8 X — X — X
9 X X — — X
10 X — X — —
11 X X — — —
12 X — v — X
13 — — X X —
14 — X — X —
15 — — X — X
16 — X — — X
17 — — — X X
18 — — X — —
19 — X — — —
20 — — — — X
21 — — X X X
22 — X — X X
23 X — — X —
24 — — X X —
25 — — X — X
26 — — — X —
27 — — X X X
28 — X — X X
29 — — X — X
30 X — X — X
31 — — X X —
32 — — X — X
33 X X — — —

Table 4. Percentage of observed η or missingness λ of XFTs
and XNSs in

Hancock, Harrison, and Jackson Counties after observation deletion

Symbol Description

Frequency (η or λ)

Hancock Harrison Jackson

XFTs
Observed 49 (52%) 123 (57%) 120 (63%)
Missing 46 (48%) 93 (43%) 71 (37%)

XNSs Observed 9 (22%) 105 (53%) 179 (77%)
Missing 32 (78%) 94 (47%) 53 (23%)

Table 2. Frequency and percentages of observed (η) or missingness (λ) for
XFT and XNS in Hancock, Harrison, and Jackson Counties

XFT=XNS

Frequency (η or λ)

TotalHancock Harrison Jackson

Slab 39 (21%) 86 (23%) 151 (50%) 276
Elevated floor 56 (30%) 130 (34%) 40 (13%) 266
Missing 89 (48%) 163 (43%) 112 (37%) 364
1-story 26 (14%) 160 (42%) 187 (62%) 373
2-story 15 (8%) 39 (10%) 45 (15%) 99
Missing 143 (78%) 180 (47%) 71 (23%) 394
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ln

�
PðXFT ¼ ElevatedÞ

1 − PðXFT ¼ ElevatedÞ
�

¼ −2.86þ 0.29Dmax þ 4.18Umax

ð9Þ

Eqs. (10)–(12) define the final TPMM imputation models (Mod-
els 11, 31, and 10) for number of stories in Hancock, Harrison, and
Jackson Counties, respectively. These models estimate the proba-
bility that buildings with missing number of stories data are 1-story
buildings

ln

�
PðXNS ¼ 1-storyÞ

1 − PðXNS ¼ 1-storyÞ
�

¼ 24.28 − 0.32U3;max − 5.62HS;max

ð10Þ

ln

�
PðXNS ¼ 1-storyÞ

1 − PðXNS ¼ 1-storyÞ
�

¼ 2.66þ 0.2Dmax − 6.08Umax ð11Þ

ln

�
PðXNS ¼ 1-storyÞ

1 − PðXNS ¼ 1-storyÞ
�

¼ 5.67 − 0.06U3;max − 0.33Dmax

ð12Þ

Given the binary missing explanatory variables, LRPMM impu-
tation models performed better than LRMI imputation models in
imputing foundation type and number of stories for five of the
six models in the three counties of the study area. The missing
observations have been imputed as a function of only continuous
observed variables (i.e., hazard intensities and base flood elevation)
without considering other building attributes; therefore, more ob-
served building attributes in regions that share similar building
construction patterns would allow the extension of the methodol-
ogy to more comprehensive imputation models that impute build-
ing attributes with missing observations as a function of hazard
and other known building attributes. Application of the developed
approaches using comprehensive data sets may lead to stronger
evaluation of the performance of imputation models.

Figs. 1 and 2 show comparisons between observed and imputed
foundation types and number of stories, respectively, for the se-
lected models [Eqs. (7)–(12)]. The relative frequency of imputed
and observed foundation types are similar in Hancock County,
whereas elevated foundations were imputed at a higher rate than
observed in Harrison and Jackson Counties. One-story homes were

imputed at a higher rate than observed in Hancock and Harrison
Counties but at a lower rate than observed in Jackson Country.
The alignment of imputed and observed frequencies reflect the
model CCR (Table 5), where models with CCR greater than 90%
result in imputed observations very close to the observed observa-
tions (Model 13 for foundation in Hancock), whereas models with
CCR less than 90% resulted in imputed observations with greater
variation from the observed observations.

Study Limitations

The study is limited to 1- and 2-story wood-framed single-family
homes with slab and elevated foundations subjected to hurricane
hazards. Although the application of the developed diagnostic
and comparison approaches is for a binary variable with missing

0%

20%

40%

60%

80%

100%

Fig. 1. Observed versus imputed foundation types in Hancock,
Harrison, and Jackson Counties.

0%

20%

40%

60%

80%

100%

Fig. 2. Observed versus imputed number of stories in Hancock,
Harrison, and Jackson Counties.

Table 5. Observed versus imputed Xgs error matrices, mean CE, and CCR for XFTs
and XNSs in Hancock, Harrison, and Jackson Counties

County

Imputed Xgs

T FT K Slab Elevated CELRFT
CCRLRFT

NS K 1-story 2-story CELRNS
CCRLRNS

Observed Xgs
Hancock TPMM Slab 13 21 2 9% 93% 1-story 11 19 1 5% 81%

Elevated 1 22 4% 2-story 5 7 42%
TMI Slab 2 8 15 65% 61% 1-story 15 15 5 25% 78%

Elevated 3 20 13% 2-story 2 10 17%

Harrison TPMM Slab 22 25 13 34% 60% 1-story 31 69 4 5% 80%
Elevated 24 31 44% 2-story 15 6 71%

TMI Slab 25 20 18 47% 72% 1-story 32 70 3 4% 77%
Elevated 8 47 15% 2-story 19 2 90%

Jackson TPMM Slab 24 49 9 16% 85% 1-story 10 36 9 20% 77%
Elevated 2 11 15% 2-story 3 5 38%

TMI Slab 24 48 10 17% 79% 1-story 28 34 11 24% 70%
Elevated 5 8 38% 2-story 5 3 63%

Note: Bold = final imputation models. Rows of the matrices represent the frequency of slab, elevated foundation, and one and two stories prior to deletion;
columns represent the frequency of the imputed binary variable levels after deletion.
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observations, these methodologies may be expanded to multinomial
variables and other imputation techniques [e.g., iterative robust
model-based imputation (IRMI), multiple imputations of incom-
plete multivariate data (AMELIA), and sequential imputation for
missing values (IMPSEQ)]. The results have been derived as a
function of the range of hazard values experienced during
Hurricane Katrina in coastal Mississippi and are therefore limited
to this study.

Summary and Conclusions

This paper presented two imputation approaches along with impu-
tation diagnostic and comparison approaches for binary building
attribute data with missing observations. PMM and MI logistic
regression–based imputation models were used to impute building
attributes with missing observations. A diagnostic approach, based
on the logistic regression goodness-of-fit test and the significance
and independence of the observed numerical variables, was pre-
sented to evaluate the fit of PMM and MI imputation models. A
comparison approach based on the percentage of correctly imputed
observations and expressed in terms of CCR was presented to
evaluate the performance of PMM and MI imputation models. A
case study based on a data set of single-family homes damaged by
2005 Hurricane Katrina in coastal Mississippi was presented to
demonstrate the application of the methodology. Missing founda-
tion type and number of stories for single-family homes were
imputed as a function of maximum 3-s wind speed, maximum sig-
nificant wave height, maximum surge depth, maximum water
speed, and base flood elevation. The contributions and findings of
this paper are as follows:
• Approaches were developed to (1) impute binary building attri-

butes with missing observations using imputation models rather
than statistical models, (2) diagnose the fit of individual impu-
tation models for binary categorical variables with missing ob-
servations rather than for continuous variables with missing
observations, (3) determine the variables to be used in the im-
putation models, (4) evaluate the performance of the imputation
models themselves rather than the statistical models fit on the
imputed data set, and (5) determine the final imputation models
to impute building attributes by comparing the performance of
several imputation models.

• In the case study, PMM imputation models performed better
performance than MI imputation models, where the average
performance accuracy for PMM imputation models was 9%
greater for foundation type and 4% greater for number of stories
than for MI imputation models.
The developed approaches provide data collectors and damage

modelers with the knowledge and guidance needed to impute build-
ing attributes with missing observations, particularly for model
developers who rely on field data for risk assessment and building
fragility models. Implementation of imputation techniques im-
proves the quality of postevent data with incomplete building attrib-
utes, and implementation of diagnostic and comparison approaches
ensure accuracy and validity of the imputation models themselves.
Improving the quality of postevent data sets improves the develop-
ment of data-based fragility and damage models, thus improving
building damage prediction. Future work will extend the logistic
regression–based imputation models to multinomial regression–
based imputation models. Also, data with more observed building
attributes in regions that share similar common building construc-
tion patterns will be collected so that missing observations can be
imputed as a function of hazard parameters and other building
attributes.
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