Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions

JC Dietrich¹, A Gharagozlou¹, JF Gorski¹, TR Fulle¹

¹Dep't of Civil, Construction, and Environmental Engineering, NC State University

USCRP FY18 Academic Award in Progress Review Web Meeting, 16 Oct 2019

Inlet-Scale Erosion Hatteras Island during Florence (2018)

the last

Region-Scale Flooding Isabel Inlet (2003)

ALL MARKET PLAN

Preliminaries Goals and Objectives

Goals:

- 1. Better understand the storm-induced erosion of barrier islands
- 2. Develop ways to represent that erosion in predictive models on large domains

Objectives:

- 1. Develop a high-resolution hindcast of inlet creation in a barrier island system
- 2. Explore the sensitivity of erosion predictions to the quality of input data
- 3. Implement a two-way coupling of small-scale erosion to larger-scale flooding

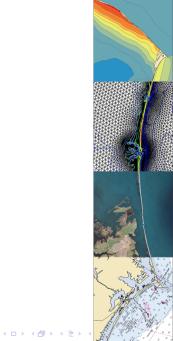
Preliminaries

Presentation Guidelines

- 1. An Outward Connection: How can your results be translated and shared with the community, other agencies, or other academics? What is the planned timing for sharing in-progress and final results?
 - Coupling of erosion and flooding predictions has wide applicability and interest
 - Allows for scenario-based analysis and design
 - Support from NCEM, NWS, FEMA, USACE
 - This research has a significant development component
 - Dissemination in academic settings (journals, conferences)
 - Will continue to share with partners as research matures
- 2. Thinking Beyond Your Research: How does your work fit into addressing a broader societal need?
 - Coastal residents and decision-makers rely on predictions of storm-driven flooding
 - Better predictions will have direct benefits to safety and prosperity along our coasts

Preliminaries

Presentation Guidelines


- **3.** Leveraging: Are you leveraging your research with outcomes from other research, either funded by USCRP or externally?
 - Directly connected to other funded projects to couple erosion and flooding
 - NC Sea Grant (2016-2018)
 - USCRP (2019-2021)
 - Indirectly related to other projects about multi-scale coastal processes
 - DHS CRCoE (2016-2020)
 - NSF PREEVENTS (2017-2021)
- 4. Problems: Is there anything holding you back from making progress?
 - This is a tough problem!
- 5. Solutions: How can the USCRP help you?
 - Need to better plug into expertise at USCRP member agencies
 - Need feedback, both today and at ASBPA conference

Prior Work – Beach and Dune Erosion ADCIRC+XBeach Example for Isabel (2003)

Progress Review – Island Breaching

Inlet Creation Idealized Domain Isabel Inlet

Summary and Future Work

ADCIRC+XBeach Aerial Photo of Hatteras Island

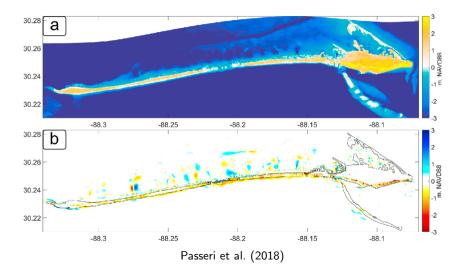
ADCIRC+XBeach

ADCIRC Mesh

${\sf ADCIRC}{+}{\sf XBeach}$

Motivation

Our forecast system is limited:


- Bathymetry and topography are fixed / constant
- No consideration of beach erosion, dune breaching, etc.
- Flooding impacts are limited behind the dunes

We are coupling with XBeach (eXtreme Beach):

- Open-source model developed in the Netherlands
- Capable of simulating hydrodynamic and morphodynamic processes
- Applied typically at beach scales (a few kilometers)

ADCIRC+XBeach eXtreme Beach (XBeach)

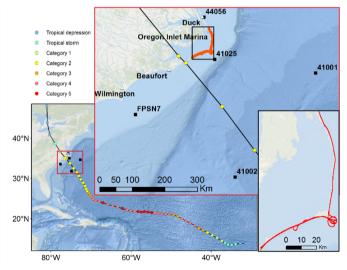
・ロト・西ト・ヨト・ヨー シタク

ADCIRC+XBeach XBeach Mesh

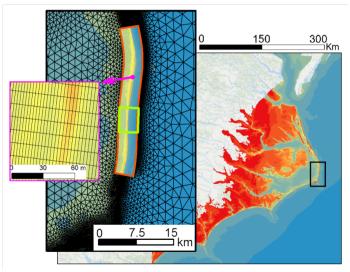
ADCIRC+XBeach

Methods

Mechanics of Coupling:

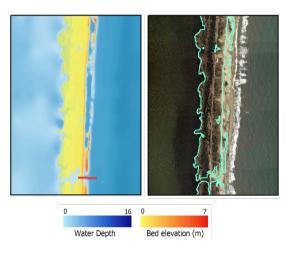

- Predict storm-driven erosion over large domains
- Develop techniques for coarsening predictions and coupling back to flooding models

Goals:

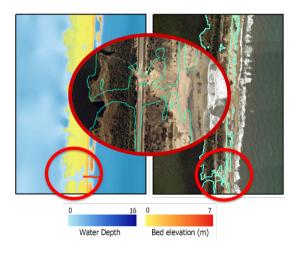

- 1 Validate XBeach erosion predictions on larger domains
 - Quantify model performance on 30-km of Hatteras Island during Isabel
- 2 Loose coupling of XBeach and ADCIRC
 - What are implications as a hydraulic control to stop or allow flooding?

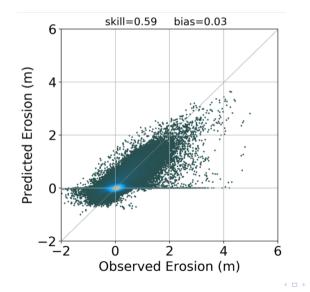
- How will ADCIRC predictions change with updated topography?

Example for Isabel (2003) Inlet- and Region-Scales



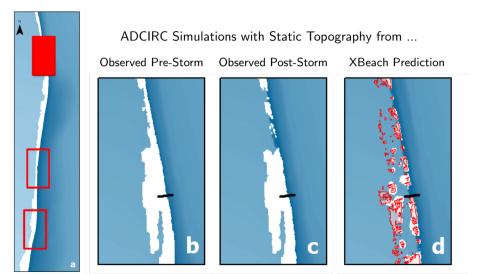
Example for Isabel (2003) Structured and Unstructured Meshes


Example for Isabel (2003) Comparison of XBeach Overwash Extents

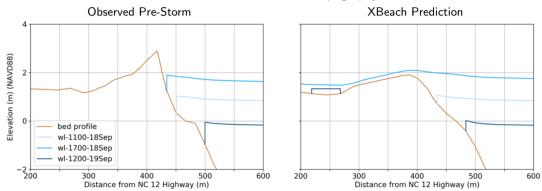


Example for Isabel (2003) Comparison of XBeach Overwash Extents

Example for Isabel (2003) 'Excellent' Skill Score



◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●


Example for Isabel (2003)

Modified ADCIRC Mesh

Example for Isabel (2003) Static Updates to ADCIRC Topography

Example for Isabel (2003) Comparison of ADCIRC Flooding

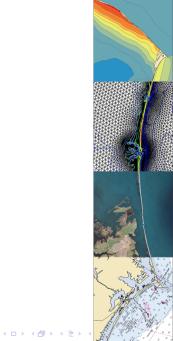
ADCIRC Simulations with Static Topography from ...

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Example from Isabel (2003) Summary

- 1. XBeach performance:
 - Model performance on 30 km domain is very encouraging
 - Beach profile, Erosion events, flooding extents match post-storm observation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


- 2. XBeach mesh resolution:
 - Skill score is not sensitive to alongshore mesh spacing
 - Skill score gets worse as the cross-shore mesh resolution increases
- 3. ADCIRC-updated topo/bathy:
 - Beach and dune erosion contribute to flooding predictions
 - Results match the prediction in XBeach and post-storm observation

Prior Work – Beach and Dune Erosion ADCIRC+XBeach Example for Isabel (2003)

Progress Review – Island Breaching

Inlet Creation Idealized Domain Isabel Inlet

Summary and Future Work

Inlet Creation Isabel Inlet (2003)

MACHINE MANY

Inlet Creation

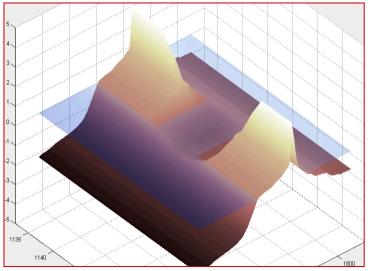
Literature Review

Previous studies on breach modeling:

- (1) Kraus (2003), De-Vet (2014), Elsayed et al. (2017)
 - Breaching, erosion, channel formation
 - Physics-based model improvement
 - Small domain models
- (2) Kurum and Overton (2013)
 - Land cover effects on breaching
 - Multiple sediment layers
 - Different sediment properties (median size and erodability)

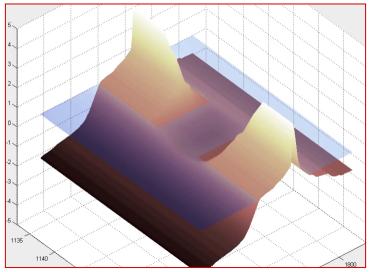
Summary:

- Many studies on behavior of inlets after their formation
- Limited studies about creation of inlets


Inlet Creation

Numerical Experiments

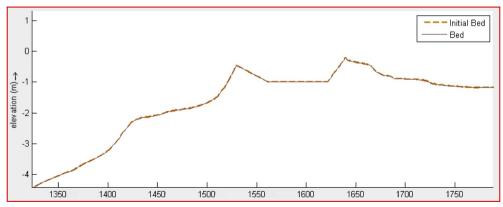
We used a combination of XBeach and ADCIRC modeling:


- Idealized Domain Uniform geometry, smooth hydrodynamic forcing
 - XBeach:
 - Can we initiate the inlet formation?
 - Can we control the location of the inlet?
- Isabel Inlet Real geometry, real hydrodynamic and atmospheric forcing
 - XBeach:
 - How much of a 'seed' is necessary?
 - Instead of calibration factors, can we use bed friction?
 - ADCIRC:
 - Can we use the erosion timing from XBeach to inform the variation of the bathymetry in ADCIRC?

Idealized Domain Barrier Island with Notch In Dune

・ロト・西ト・モート ヨー うらぐ

Idealized Domain Barrier Island with Notch In Dune

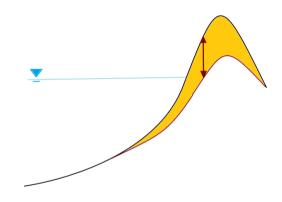


・ロト・西ト・モート ヨー うらぐ

Idealized Domain Failure of Inlet Creation

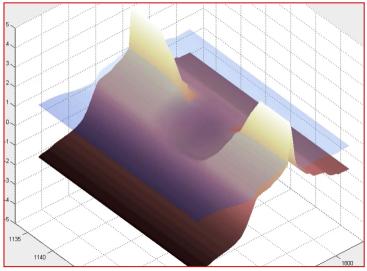
We are unable to erode a full channel:

- Even with the initial cut to -1 m (below sea level), the channel doesn't get any deeper
- Animation of ground surface at centerline of channel:

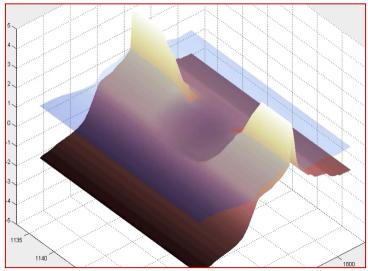

Idealized Domain Use of Non-Erodible Layer

So we added a non-erodible layer:

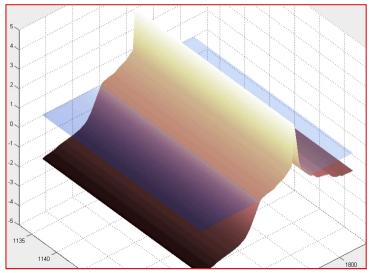
- Specified as a second ground surface as input to XBeach
- Erosion is computed until the ground surface is lowered to the non-erodible layer
- Then erosion is stopped


Used first on the idealized domain:

- Allowed erosion in the channel
- Prevent erosion in the beaches and dunes

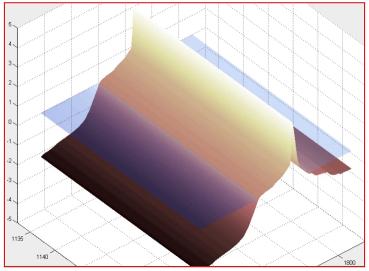

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Idealized Domain Inlet is Created ... with an Initial Cut



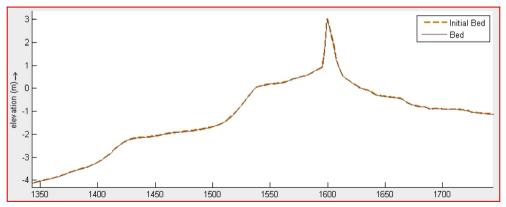
・ロト・西ト・ヨト・ヨー シタク

Idealized Domain Inlet is Created ... with an Initial Cut



Idealized Domain Inlet is Created ... without an Initial Cut

Idealized Domain


Inlet is Created ... without an Initial Cut

Idealized Domain Success of Inlet Creation

Now we can erode a full channel:

- Without any initial seed, the full beach and dune are removed
- Animation of ground surface at centerline of channel:

Idealized Domain

Summary

Challenges in controlling location and magnitude of breach:

- With default settings, XBeach prefers to remove entire beach/dune system

- Even with an initial cut and channel through the dune

We can work around this with a non-erodible layer:

- Controls exactly where erosion is allowed
- User can specify location and magnitude
- XBeach determines the timing of the inlet creation

This raises questions about how to forecast?

- Still ... we push forward to the Isabel Inlet

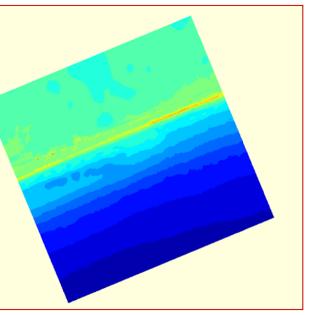
Isabel Inlet Pre-Storm Ground Surface

6 m

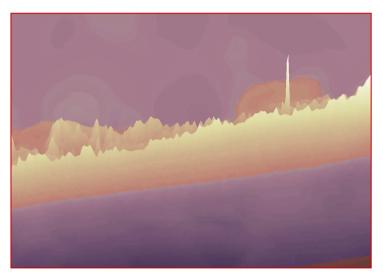
Isabel Inlet Post-Storm Ground Surface

Isabel Inlet XBeach Grid

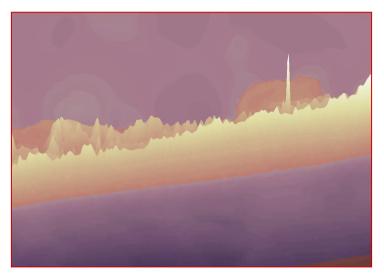
Domain Size:


- 2.2 km \times 2.2 km

Resolution:


- Alongshore: 2 to 5 m
- Cross-shore: 2 to 15 m

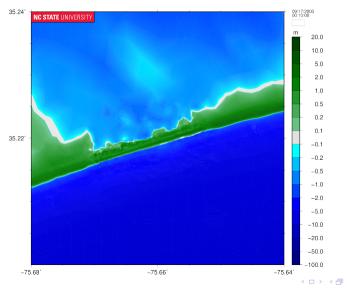
Layers:


- Pre-storm: bathy/topo
- Post-storm: non-erodible

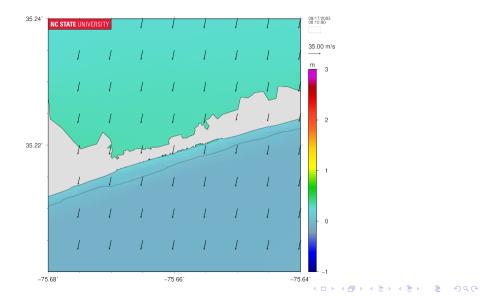
Isabel Inlet XBeach Hindcast of Inlet Creation

Isabel Inlet XBeach Hindcast of Inlet Creation

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ めんの

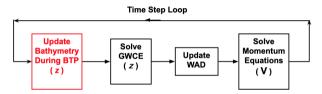

Coupling from XBeach to ADCIRC

Remaining questions:

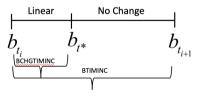

- Is it possible for XBeach to predict this inlet creation, without the erodible layer?
 - Exploring ways to slow the erosion by adjusting the maximum Shields parameter

- Exploring ways to control location via variable bed friction
- How to connect to ADCIRC?
 - Can we use the erosion predictions to inform the flooding predictions?

Existing Capability with Static Ground Surface



Existing Capability with Static Ground Surface



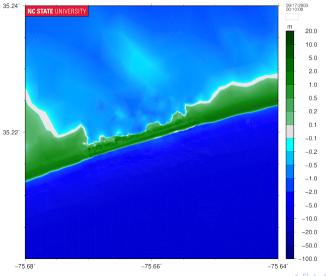
Time-Varying Bathymetry in ADCIRC

- Dr. Chris Massey added capability for time-varying bathymetry:
 - Occurs at start of time step:

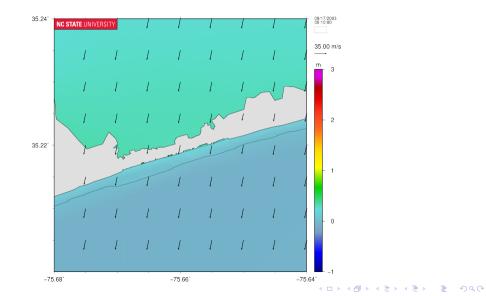
- Control over timing during simulation:

Our Implementation of Time-Varying Bathymetry

We created ADCIRC input files with the erosion


- Changes in ground surface, specified at only the vertices near the breach Location and magnitude of erosion is coming from the post-storm survey
 - Similar to the non-erodible layer in XBeach
 - Need more work with XBeach to gain predictions of inlet creation

Timing of erosion is coming from XBeach


- Controlling the erosion over 1 day, during the landfall of the storm

- Incremental variations:
 - Changes over 1 hour
 - Static over 2 hours
- Repeat over 1 day

Isabel Inlet Erosion over 1 Day

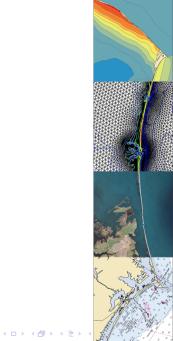
Isabel Inlet Erosion over 1 Day

Summary

Implemented work-arounds by using the post-storm surveys:

- Non-erodible layer in XBeach
- Time-varying bathymetry in ADCIRC

Loose coupling between XBeach and ADCIRC

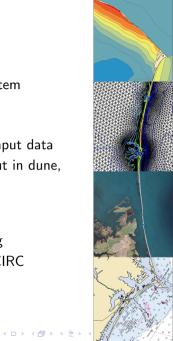

- Predicted timing of erosion is connected to varying ground surface in ADCIRC
- Significant flow over and through Hatteras Island

Prior Work – Beach and Dune Erosion ADCIRC+XBeach Example for Isabel (2003)

Progress Review – Island Breaching

Inlet Creation Idealized Domain Isabel Inlet

Summary and Future Work



Summary and Future Work

Coupling of Inlet-Scale Erosion and Region-Scale Flooding Predictions

Objectives:

- 1. High-resolution hindcast of inlet creation in a barrier island system
 - XBeach, using non-erodible layer
 - ADCIRC, using time-varying bathymetry
- $2. \ \mbox{Explore}$ the sensitivity of erosion predictions to the quality of input data
 - Erosion is sensitive to grid resolution, presence of 'seed' cut in dune, sediment settings (Shields parameter, bed friction)
 - Still unable to initiate a deep channel in a desired location
 - Need a non-erodible layer
- 3. Two-way coupling of small-scale erosion to larger-scale flooding
 - Waves and water levels to XBeach, erosion timing to ADCIRC
 - Significant flows over and through the Isabel Inlet

