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INTRODUCTION

Various numerical methods for the solution of the shallow water equations

- have been applied to problems of flood routing, tidal circulation, storm surges,

_ and atmospheric circulation (1,3,4,5,8,10, 12, 14). Utility of such methods is ofien

:Iemonstratefi by comparison of computed variables with field observations.
however th1§ type of ‘comparison is often incapable of adequately verifying
that a numerical model accurately represents the dynamics of the study region.

\ o s .
The limitations of this approach are due to inadequate data and incomplete

understandi‘ng of the behavior of the numerical procedure.
Observations of water depth and velocity are rarely available throughout the

- temporal and spatial domains of interest. While depth measurements are common

l

!

o

near‘ sl.xoreline boundaries, they are much less common and more difficult to
obtain in the open sea. Accurate vertically or cross-sectionally averaged velocity
da.ta are even more scarce. Experimentally undetected subregions may also
exist in which the shallow water equations do not accurately describe the flow
phenomenon. Thus, in general, data bases are inadequate tools for establishing
that a numerical model is correctly solving the governing equations.

The precision with which a numerical scheme solves the full governing equations
§hould also be established. Because of the nonlinearities in the equations, this
is difficult to ascertain precisely. Furthermore the effect of an irregularly shaped
boundary on the accuracy of the numerical solution is generally not completely
known although it is acknowledged to be important.

These various sources of error and uncertainty in verification can many times
be completely buried in the numerical solution by adjustment of parameters
such as bathymetry, eddy viscosity, and Chezy coefficients. It is our belief
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that a more systematic and rigorous
in order to establish the credibility o
of analytic solutions are herein develope
comparison to numerical solutions. By necessi
" have been linearized. However bottom friction, wind stress,

. Solutions for the dynamic steady state with a periodic forcing function and
for startup from rest are obtained. In line with the philosophy that these solutios
are useful primarily as tools for model verification, emphasis is placed on

|| periodic solutions.
Basic EauaTions

i The linearized shallow water equations will be solved in the subsequen!
' examples. These equations are obtained from the full shallow water equations
by neglecting the convective terms, assuming the oscillations of the free surface

are small in comparison to the total depth, and using a linearized friction term.

Thus the equations take the form:

;18

aI+V-[luv}=0 ............................... 1)
av w

_— s [ -

ot gVL+ v A E 0 0 5 @ s e e e E e B 66 S @)

in which =
= the veft(iz;{l’t) = the free ?“fface elevation above mean sea level; v(x,y,?)
mean sea level);oa‘{graged fluid velocity; h(x,y) = the vertical distance from
bed friction paramete oor of the water body; g = gravity; T = the linearized
be spatially invariam-e; isfil::;ed c;nstam; W = the wind stress, assumed to
g oo A ; and x,y = the horizontal i i
Differentiation of Eq. 1 with respect to time yields RSEHEREaE

¢ av
ar’+v'["§;’]=° ............................. €)

Substituti s
ubstitution of Eq. 2 into Eq. 3 for av/az and rearrangement yields

2

| 8¢
L - V@V =V rv)=0 ... ... ... . .. ... ()]

at?

Finally, substitution of Eq. 1into Eq. 4 for V - (hv) yields

a2;+ X_ o
| —— T —— . =
ar T e T ETETDS0 0)

| ;nge;uz:lt::n, Logethe: with appropriate boundary conditions, will be solved
subsequent examples. The solution for v is then obtained from

A

-—

22222

and variable bathymetry have been incorporated into the equations. .
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Periodic Steady State Solutions

Case I: Polar Geometry.—The problem considered here is shown in Fig. 1.
Flow is required to be tangent to the solid boundaries at r = ry, 8 = 0 and
6 = &. A tidal forcing function is specified at r = r,, and constant wind
stress is imposed throughout, in an arbitrary direction. Bathymetry is described
by h = H,r" in which H_ is a constant, and n is not necessarily an integer
and may assume any real value. Boundary conditions are:

a w,
at r=ry —-—=0 ... (6a)
or gh
at r=ry: {(r;,0,t)=Re{{,0)e™'} . ... .. ... ... .. .. . (6b)
1 8¢ W,
at 0=0,¢: —————=0 ....... ... ... (6¢c)
r a6 gh

in which W,, W, = the steady uniform wind stress components in the r and
8 directions, respectively; w = the frequency of the tidal forcing function; {,(0)

\
\
\
ey |
[ i

FIG. 1.—Annular Section in r-6 Coordinates with Opening at r — r,

= a complex function representing the tidal amplitude and phase at r = r,;

and i = V —1.
The solution to Eq. 5 subject to Eq. 6 is most easily obtained by letting

§=CJ‘+ gw ................................... (7)

in which {, = the solution to Eqs. 5 and 6 in the absence of wind stress;
and {, = the solution in the absence of a tidal forcing function. Thus two
sets of equations must be solved:

2
azzw GCW ad Cw
2 —_— =
’ ~ +r(1+n) > + pr 0. .. ... 8a)
agW Wr 0
a - : Ty A Y e e
t r r, or gH,,r" (8b)

U r=ry: Lwl2,0)=0... ... oo 8¢)
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19 W,
at 6=0,6: —ﬂ——":o .................... 34
r 8 gH_r"
and
3’ ) ? FR4
if i--g R "_zl:r2 €2f+r(n+l)i zf =0...... %9)
at at ar
d
at r=r, B s 5 v a s me v 0 5 s w5 s n 98 nn s 5o 9%)
or
at r=r,: §,(72,9,1)=Re{§,,(0)e'""} .................. (9C)
a
A 8=06: oo . ©d)
a0

Steady State Wind Setup

To solve Egs. 8, consider first the case of unit wind stress in the direction

6 = 0. Assuming a solution of the form {w(r,8) = R(r) T(8) in Eq. 84 results
in

R+ (A +mrR Y =« .o (10a)
K= —~T— ................................. (10b)
T
in which k? = a separation constant. The general solution to Eq. 10 is
Lw(r,0) = 2 (a,r*/ + b,r'1)[cos (x,0) + ¢, sin () ) an
J
. 3 n n\?
in which s,=-— 4 (-—) R (12a)
2 2
2
n n
= = (?) FRY oo unwsnmnsinaniennngenss (12b)

] Ccos 6
ator=py —EBC (130)
or  gH r?
b r=rar Ly=0 . (13b)
aly $
el
30 e e (13¢)
1 a i
at 0 =¢: —-i— ke

by
s *
Th

0,
ge«

the

CO¢

COs
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Eq. 13¢c is satisfied by lettmg ¢, = 0 for all j. Eq. 134 will be satisfied
by a single component k, = k* such that
sin
i (14)

s*=1-n; x'=(l—n)”2; a* = ————=m oy s m oo G
gH ,x* sin (k*0)

This method fails for combinations of n and ¢ such that x* = j w/d, j =
0, 1, 2, .... In these cases, the method described subsequently for Cartesian

geometry must be used. Boundary conditions Eqs. 13¢ and 134 are unaffected
by additional components in Eq. 11 when k, = jw/d, j =0, 1, 2, .... Thus,
the most general solution which satisfies these two boundary conditions is

L (r,8)=a*r'""[cos (1 —n)'’?0]

. o
+3 @ + b,r') cos (%) ..................... (15a)

Jj=0"

2 3 2
inwhich s, = _Z + \/(1) + (j—ﬂ“) 5
2 2 ¢
(= - \/(")2 LAY
= > 5 + ;— ..................... (15b)

To satisfy Eqs. 13a and 13b, first express cos 6 and cos [(I — n)'/?0]
as Fourier series in the interval 0 < 0 < ¢:

0
cos [(1 -n)""%0] =D, + 2 D, cos <’: ) ............... (16a)
J=1

cosf = E, +2E cos(”e) ...................... (16b)
J=1 [ ;

nwhich p, = SBI1-m"]
Toa-m'

_ 2=/~ n)' ¢ sin [(1 - n)'*$]
J N (1 _n)¢2_121r2 ................ (160)
sin ¢ 2(-1)’¢ sind
Eo = ¢ E/=—;Tj21r—2— ..................... (l6d)

Application of boundary conditions Egs. 13 ¢ and 13 dnow gives a determination
of a,and b,:

E,
s,a,rii+t,b r'f=r""{—a"D + } ...........
14571 1057 1 gH.| (17a)

ary + b,r;/=r'2'"{-a‘D,} ....................... (17b)

which can be solved to yield
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a*D,[e,rirs " —r{r ]+——g_1},,—— N )

= slr;'/,-;/.. 1],-‘[/,? ............. iy
l-n _s;

e o

< T ay B

= sr i~ 4riry )

Next, consider the case of a unit wind stress in the direction 8 = .1
we let « = 0 — o, it is readily verified that the solution is again given b
Eq. 15a, with a substituted for 0 throughout. A wind stress of arbitrary magm'tud‘ b
and direction can be decomposed into components in the directions 6 = 0 and -

0 =0:  Th
W Wa,t Wls scsosnmentos-stanespsonbinssss ay
in which r, and r, are unit vectors in the directions 8 = 0 and 6 = ¢, and £

W, and W, are the components of wind stress in these directions. Thus, the -
complete steady state wind setup is obtained by superposition:

Cw(r,0)=a*r'""{W,cos [(1—n)'"*8] + W, cos [(1 —n)"/*(® — )]} ©)

Ry

j=0

Periodic Tidal Response

To solve Eqs. 9, assume a solution of the form { (r,8,¢) = Re (R(r) T(8)e'*' }. R,
Substituting this in Eq. 94 produces

1 2R
E['zR" IR (L 4+ m) 4 ]=.<=

e et S T T T (20a)
r in
d TII )
A = KT L e e e e e (00 «
in which k* = a separation constant and B* = (w? — iwt)/gH,. The general W]
solution is thus )
R
{,(r,0,t)=Re {z (@R, + b,R,,)[cos (x,0) } '
J
. lwt Ri
+ ¢, sin(x,0)] e } ............................. @1
in which R, (r) and R,,(r) are the complex solutions of Eq. 20a. Boundary : b
condition Eq. 9d is satisfied by letting ¢, = O for all j, and by retaining only v:

those terms for which x, = jn/é, j = 0, 1, 2 .... If boundary condition Eq.
9¢ is expressed as a Fourier series:
oo : ;
Jjmo f
0)i3) = 2 F,cos ("'—"") .......................... 22)
20 j=o ¢ it

cecccce e
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in which F; = §g {,(8) cos (jm0/b)d0/§¢ cos’(jw0/d)d0, the remaining
boundary conditions can be applied to determine the complex constants a, and
b .
GRU(P)+B,Ry(r)=0 . . .. .. ... (23a)
GRy(P)+b,Ry(ra)=F, ... ... (23b)
which yields
F,R;,(r) \f
a;=— e B B - 88 i EE BE b s . e (23¢c) |l
R2j(’|)ij(’2)‘sz(’z)le(rl) i
—F,R\.(r))
by=— L (234)
sz(’l)Ru(’z) - Rz;(’z)Ru(_’n)
The complete solution is thus
e 77 0
{/(r,0,2) =Re {e“"' Z (@R, + bijj)[cos (jd) )J} ......... (24)
Jj=0
‘ The functions R, ;and R, are given for any value of n # 2 by Hildebrand
):
—_ p—n/2 B 1—(n/2)
R,(r)y=r="727, e (25a)
n
1 i i
2
-n/2 B 1-(n/2) '
Ry(r)=r Y, F- o] s s ms s i aodowed s ow s s 25b) il
n A
l ey
/]
in which J, and Y, are the solutions of Bessel’s equation of order p, and |
1 2jm\? il
p= n’+ (1—) ........................ (25¢) !
2—-n ¢ j

When n = 2 or B = 0, the limiting forms of Eqgs. 25a and 25b are

2 . 2 |
R,(r)=r; Sj=—§‘+\/<-:—) —Bz+(‘;’l) .......... (25d) <
n n\? Jjm \? il
t 2 . A
sz(r) =r; = —-2—-- J(-z—) —B + (d) ) .......... (258) ‘v

Since Egs. 9 are linear, the response to forcing at several frequencies can ‘if}

be obtained separately and superimposed. Thus, to accomodate a generalized |
version of boundary condition Eq. 9¢ such as

{(r,,0,2) =Re {2 Cj(ﬁ)e'“‘!'}
J=1

it is only necessary to obtain N individual solutions as previously seen. Situations |fi}
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where a time-independent elevation {;(8) is imposed at r =

OCTOBER 1978

by letting = 0 in Eq. 9¢.
When {, in Eq. 9c is independent of 6, the solution given by Eq. 24 is

greatly simplified because a; and b, will be zero for j = 1. The response is

thus independent of 8. Table 1 gives, for a few values of n, the complete

TABLE 1.—Some Periodic One-Dimensional Polar Solutions with Frequency v

HY1(0
r, can be handled

n Bathymetry Solution Constants
() (2 (3) 4
LY, Br)
1) = Re{4J, + BY a A=
—— [ e anenen T Br) - 1Br V.67
| LB

n 2
' _1___'_.
|
|
|
I'l| rz

=2

V,r.1) =Re {I—Al.(Br)

iw
BH,

Ur) = Re (1/V7r 14,28 V7)
+ BY, 2BV )] e™")

- BY,(Br)]

V,(r) = Rc{l/r [-4J,28V7r)

~ BY,QBV7)) — e""}
BH,

Ur.t) = Re {[Ar + Br'i] e}
V,(r.l)=Re{[s.Ar""

iw 4ml}
e
B*H,

+5,Br'17")

B=
JBr)Y ,Br)—J,@r)Y,Br)

A= LV VLBV VB V)Y, V)

—1,@BVr) Y, 2BV,

VT @BV @BV VBV
~ 1,28V Y,2BV)]

Lusari?
[s,r3'rt = s,r)'r ]
=L

B=

o a,n
spratrit - siri'n

S8y = -1 Vi-p?

e

s g ]

L 2.
A
/]
/
V
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/]
/]
777777777777

€( y,t)

FIG. 2.—Rectangular Section in x-y Coordinates with Opening at x = x,
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solution to Eq. 9 in this special case. The solution for n = 0 in the absence
of friction has been examined by Lamb (9).

Case II: Cartesian Geometry.—The Cartesian version of Case I is depicted
in Fig. 2. Flow is tangent to the solid boundaries at x = x,, y = 0, and y
= L. A tidal forcing function is specified at x = x,, and a constant wind
stress is present everywhere. Bathymetry is described by A = H_x", in which
H, is a constant, and n is not necessarily an integer and may assume any
real value. Boundary conditions are:

i W,

at x=x,: — ———=0. ... .. (26a)
ax gh

at x=ux,: {(x,y,t)=Re{l,(»)e™'} . ... .. . ... ... ... (26b)
at W,

at y=0,L: — ———=0. ... ... e (26¢)
ay gh

in which W,, W, = the wind stress components in the x and y directions;
o = the frequency of the tidal forcing function; {_ (y) = a complex function
representing the tidal amplitude and phase at x = x,; and i = V —1. Solution
of this problem has been examined by Briggs and Madsen (2) for the case
of zero wind stress, zero friction, and constant bathymetry.

As in the polar case, the solution to Eq. 5 subject to Eq. 26 can be decomposed:
@7

in which {, = the solution in the absence of wind, and {, = the solution
in the absence of tidal forcing. The two problems to be solved are thus

3 a? n a

g;,, C;’ L I (8a)

0x ay x dx
3 W,

at x=x,: —c—i———=0 ...................... (28b)
ax gH_x"

at x=x,: Lu(x¥)=0 . . ... e (28¢)

W

at y=0,L: Ew_ % =0 e e e e e 28d)
ay gH,x"

and

2 2 2 n o

a§,+Ta_§£_ng" a§,+a_£2,_+__§,_]=0 ............ 9

at’ at ’ ax®  ay x ox
a

at x =X, ﬁ: ............................ (29b)
ax

at x = X,: Cf(xz,y,t)=Re{§o(y)e"‘”} ................ 29¢)
i)

at y=0,L: ﬁ:o ........................... (29d)
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Steady State Wind Setup

Eqs. 28 can be solved in a manner similar to that used for Eqs. 8. First
consider a unit wind stress in the x direction. Assuming a solution of the form
{w(x,y) = &(x) n(y) in Eq. 284 results in

1

—[g”+f—g']=.<2 ............................ (30a) .
£ x

and — = —kZ . e e (30b)

in which «? = a separation constant. The general solution to Eq. 30 is

Lw(x,) =, x*{a,J, (ix,x)
J

in which J, and Y, are Bessel functions of order p, and sin (k,y) is replaced
by y when «, = 0. Boundary conditions are:

aL 1

Bt X=X,0 —— = (33a)
ax  gH x|

at x=x,0 $p=0 . . . (33b)
a

B y=0,L: —Z=0 ... ... (33¢)
ay

Eq. 33¢ is satisfied by letting ¢ , = 0 for all j, and by retaining only those
terms for which «, = jw/L,j = 0, 1, 2, .... Since boundary conditions Egs.
33a and 335 do not depend on y, they are satisfied by retaining only the term
with j = 0. The solution is thus the limiting form of Eq. 31 when « , = 0:

Cw(x,p)=a+bx'™ (n#1) ... . (34a)
Lw(x,y)=a+blogx (n=1) . ......... ... 0uueuee... (34b)
The constants a and b are determined by Egs. 334 and 335:

1-n

X2

= b= — ) I 35a)
(1-n)gH, (1-n)gH, D (
1 1
PR . T i T | S (35b)
gH, gH,

Next, consider the case of a unit wind stress in the y direction. The general
solution is again given by Eqs. 31, 32, which is rewritten for convenience as:

Food) = 3 U, G20 + 8,7, Gk 1)) e 08 6 ,9) + dsin&,9)) B6)

{_

HY

B«

at

at

at



HY10 FLOW MODEL TESTING 1419

9
at x=x, -—Ll: ........................... (38a)
ax
at x=x,: L,=0 ... . . . e (38b)
9 1
at y=0,L _C_W= ....................... (38¢c)
ay gH_x"

Eq. 38b is satisfied by proper choice of b,:
3 J(ix,x,)
! Y,(ix,x,)
If one makes the substitution
Z,(iw;x)=J,(ix,x) Y, (ix,x;) — J,(ix ;x,) Y ,(ik ;x)
then Eq. 384 is satisfied by selecting only those values of «, for which

d
;x— X*Z,3k, )] e, =0 oo

Expanding this produces
Z, (ixx)=J,_ (icx) Y, (ix,x;,)=J,(ix,x;) Y, (ix,x,)=0... (4])

Thus, the quantity (i k,x,) may only assume the values of the zeros of the
function Z,_, . It is clear from this that «; is limited to a discrete set of imaginary

numbers:

in which v,, the jth zero of Z,_,, is real. Eq. 36 now becomes

Lw(x,y) = x’i {Z‘D (ij )}{fjcosh (1!!—) + e, sinh (‘y,y )} ... (43)
X X Xy

Jj=1
To satisfy Eq. 38¢, first expand the function x
orthogonal set of functions Z,:

—(n+ - Y,
P = 2 Gz, (x— x) ........................ (44a)

~®*?) in terms of the complete,
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The numerator and denominator of this expression are easily evaluated using

formulas in Luke (11) and Wylie (15), respectively. Application of boundary

condition Eq. 38¢ now gives a determination of the constants f; and e;:

Ty | (‘y,L) ...........
sinh
Xy
'ngHo

The complete steady-state response to an arbitrary wind stress is thus obtained
by superposition:

Lw(x,y)= W {a+bx'""}

+W), )C"ZZID M— f, cosh L—y— + e, sinh M ...... (46)
J=1 X, ! X ! Xy

in which W _and W, are the x and y components of the wind stress, respectively.

Periodic Tidal Response

Following the approach taken in the polar case, Eqs. 29 can be solved by

assuming a solution of the form {,(x,y,7) = Re {£(x) n(y)e" ). Substituting
this into Eq. 294 results in

e [g” +—& + B" g] =k e 47a)
& x

nll 2

TESEE KT B s s 00 a6 P s e S e s S s @B e e @ e s 6 (47b)
n

in which «? is a separation constant and B> = (w> — iwt)/gH, as previously
seen. The general solution is thus

{[(x,y,t)=Re {2 (@€, + bE,,)[cos (x,p) + ¢, sin (x,p)] e"‘"} ... (48)

Jj=0

in which &,;(x) and &,,(x) are the complex solutions of Eq. 47a. Boundary
condition Eq. 294 is satisfied by letting ¢, = 0 for all j, and by retaining only
those terms in Eq. 48 for which x, = j=/L,j=0, 1,2, .... Boundary condition
Eq. 29¢ can be expressed as a Fourier series:

- jmy
()= H, cos( : ) ......................... (49)

j=0

HY10

cond
cons

! !
4

3
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in which H, =.S;‘ ¢, cos (jmy/L) dy/§¢ cos® (jmy/L) dy. The remaining
conditions Eqs. 295 and 29¢ can now be applied to determine the complex
constants a, and b,, which yield expressions identical in form to Eq. 23:

a;§),(x,) + b,E;,(x, )=0 ......................... (50a)
GE )+ b g (x)=H, . . .. (505)
Hj§2j(xl)
a;=— e sk s G W B E S W G mm B e e 50
EZj(xl)glj(x2)-§2j(x2)§lj(‘xl) el
—-H, glj('xl)
(504)

§2j(x|)§u(x2) §2j('x2)§:j(xl)

The complete solution is thus

{(x,y,t) =Re {e"‘" 2 (a,€,,+ b,g,,)[cos (?—)]} ......... (€2))

j=0

. The functions §,,(x) and £, (x) have been obtained for a few specific values

of n:

n=0: g (x)=cosh {[(%r) —Bz]x} ............... (52a)
. Jjm\?
€,(x) = sinh {[(T) —Bz]x} .................... (52b)

n=1: g x)=e/m/L [M (2L+%lri 1 _21'wa)] ........ (52¢)

§;,(x)=e’"""[v<?1+ 2;:) I —2’:)‘)] ............ (52d)

n=2 g ) =x0P ) (U“ x) .................... (52¢)
L

Ey(x)=x"02y (i’: x); 2= 41—;3’ .............. 62/)

n=_2: §,/(x)=e“("2’i“‘z[M<%—iJ:ZZZ; j—; inz)] ... (528)

§z,(x)=e“””""2[U(%—i{;L:; %; iB x’)] .......... (52h)

in which J Y, = the solutions of Bessel’s equation of order p, and M, U
= the solutions of Kummer’s equation (13).

As in the polar case, the response to forcing at several frequencies, including
o = 0, may be superimposed to obtain the solution to a more general versxon
of boundary condition Eq. 29¢. Again, when {, in Eq. 29c¢ is mdependd&fﬂdd
of y, the solution contains only one component (j = 0) of the series Eq. Y ‘

T
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§l(x)=x“‘"”’l,[

| @ =x"""y, [

l—n
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and is independent of y. The solution for this special case for any value of
n # 2 is obtained by solving Eq. 47a with «* = 0:

ZBXI-(n/Z)
2—-n ]
ZBXI n/2)

=]

.....................

HY 1

| TABLE 2.—Some Periodic One-Dimensional Cartesian Solutions with Frequency v

=2 +

X2

N
{(x,t) = Re {x’“ [u,,. (—B—:—)

N
+BY,, (-E:—-)] .-'}

2

V,(x.) = Re {x’” [u,u,,, (52'—-)

Bx? o
+BY |\ mt

L Bathymetry Solution Constants
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in which J, and Y, are the Bessel functions as ;Sreviously seen. When n =
.2, the limiting form is:
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Table 2 gives, for certain values of n, the complete solution to Eq. 29 when
{, is constant. The solutions for n = 0 and 1, in the absence of friction, have
been examined by Lamb (9). Ippen (7) has examined the case n = 0 with
linearized frictional dissipation.

TRANSIENT SOLUTIONS

Superposition in Frequency Domain.—An interesting example of the use of
superposition to obtain boundary forcing functions composed of various temporal
frequencies is the following approach to the ‘‘cold start’’ problem. Suppose
boundary condition Eq. 65 is represented by
{(r,,0,2)=0; t< T(e) .........................

{(r,,0,t) =Re{F(8)[—ie™“"T®]}; t=T@®). ............
in which the real functions F(8) and 7(0) are the amplitude and phase,

(54b)

C(ret)

ro\ N ANANANNAAND
AR R

b 27
w

FiG. 3.—Boundary Condition for Cold Start Problem

iyt

L —— oL =27N
w

FIG. 4.—Approximate Boundary Condition for Cold Start Problem

respectively, of the sinusoidal forcing function at r = r,. For a given value

of 6, Eq. 54 can be plotted as in Fig. 3. As an approximation, replace the
boundary condition with the periodic function illustrated in Fig. 4, and consider
the dynamic steady state response of the system, which will be periodic with
period 2L. If N is sufficiently large to allow the system to alternately come
to rest and reach the dynamic steady state with frequency w, then this problem
will approximate the ‘‘cold start’ problem. (Appropriate values for N can be
determined by examination of the fully transient problem, subsequently shown.)
The function {,(r,,0,¢) in this case is given by the Fourier series

R 1 F(8) =
C,(r2,9,1)=Re{F(6)2 a/eljl T(e)l+ 5 - —ie™ ! 7'(0)1)} (§§52

i=1
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The response can thus be obtained by a straightforward application of superposr
tion. The Cartesian case can be treated by the same procedure. _
Full Solutions for Cold Start Problem.—By using the periodic steady statt
i solutions examined previously, it is possible to obtain fully transient solutions,
| to the linearized long wave equations. By way of example, the case of startup

from rest in the polar sector will be considered. Let the full solution for {
be described by ®
- .
E=10ps(r.0,t) + x(r,0,1)
in which { ;5 = the periodic solution previously obtained. Then, with h = H, r',
the equation for x with appropriate boundary conditions which must be solved
is v,
1 9 9 1 3 52
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gH, | ot at r ar or 302 4
d
at r=r,,—x—=0 ............................. (56b)
or )\J
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Bt =0, =0 . (56d) |
L]
at 1=0 x=Lps(r0,0) . . . (56¢)
A
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at
Assuming a solution of the form x(r,9,¢) = R(r) T(6) e'“* where ,
. 2
w=ii \gH, — (L) ....................... (57a)
2 2
one finds that the spatial part of x must satisfy
1 AR
— [r’R” + @+ DHrR' + _2] =k e (57b)
R r"
Tll
and — = —k? ... (57¢)

i1 which are identical to Egs. 20. The general solutions obtamed previously can
i Juumms be used here. However, in Egs. 20, the value of B’ is dictated by the
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frequency of the forcing function; the corresponding term A in Eq. 57 represents
- . (55) free vibrations and in general will take on a spectrum of discrete values which
are dictated by the homogeneous boundary conditions. Application of Eq. 57

" gives the solution for n # 2:
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_ Values of the complex constants 4,, and B, , may be obtained from'the
(56d) initial conditions by exploiting the orthogonal properties of the spatial functions

! b o, :
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' When n = 2 the solution is somewhat simpler and given by
. = = ) jwo
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The complex constants 4, , and B, , are obtained from the orthogonality:
of the solution functions
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An examination of the time dependence in Eqs. 58 and 59 reveals some
i interesting features. All of the transient solutions behave in time as
b x(t) ~ 'kt = —f./zg:\/x}.,‘;ua—u/z)z

in which K, « is always real. For “‘large” values of A} ,, such that A2 «8H,
> (7/2)?, the solution will exhibit oscillatory behavior in time, within an envelope
which decays exponentially at the rate v/2. Further, all oscillatory transients
will decay at this same rate, so that when time after startup reaches the value
14/, all oscillatory transients will have decayed to approx 1% of their initial
values.

For “‘small” or negative values of )\,2.' «» such that A ,2 BH=(t/ 2)?, the solution
will not oscillate in time:

X(‘) _ e—‘rl/Ztl\/(-r/Z)z—A}_tgHa

in which 0 < § =< 7, with equality holding for the case A}, = 0. The condition
)\j « < 0 will result in an exponential growth of the transwnt solution. However,
the boundary condition Eq. 58/ makes solutions for A}, = 0 inadmissable,

For non-negative values of \’ +.x» the transient solution wxll decay at a rate S,
I,
the net result being that under the influence of friction, all transients decay,
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Review

The solutions presented previously incorporate several features which should
be of interest to those working with numerical models. Perhaps most notable
is the inclusion of friction. Most models that do not introduce significant amounts
of “‘numerical”’ damping will simply not overcome the effects of startup in
a reasonable amount of time without the inclusion of a finite amount of friction.
Yet analytic solutions with friction have been scarce, and limited to the simplest
cases (Ippen, 7). The obstacles to most such solutions are overcome simply
by the use of complex instead of real functions, which require little extra effort
either in analysis or in computation.

The inclusion of wind stress, bathymetry which obeys a general power law,
and two-dimensional circulation gives a broad spectrum of conditions against
which model features can be tested. The availability of complete solutions for
velocity in addition to surface elevation provides the means for verification
of computed flow fields, which are in many practical cases the most important
aspect of a problem.

The polar geometry solutions are especially interesting, since they incorporate
some boundaries which are not straight. The importance of boundary geometry
cannot be denied, and the accuracy with which a model depicts the dynamics
at the boundary is certainly an important issue. Yet most comparisons of model
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FIG. 5.—Annular Section in Polar Coor- FIG. 6.—Rectangular Section in Can:te-
dinates with Modified Opening sian Coordinates with Modified Opening

results with Cartesian solutions effectively minimize boundary error a priori,
by aligning the boundaries with the grid directions. This advantage can seldom
be realized in a real-world problem.

With slight modification, the solutions presented here can be applied to the
situations depicted in Figs. 5 and 6, where at the external boundary V-n is
specified as the tidal forcing function, in place of {. (Briggs and Madsen (2)
have examined this problem for the frictionless, constant depth case in Cartesian
geometry.) The only departure from the solutions presented herein is the change
of boundary conditions Eqs. 6b and 265 such that the proper component of
V { is specified at the boundary, instead of { itself.

Although the evaluation of a two-dimensional solution involves in general
an infinite series, considerable economy can be realized by choosing a tidal
forcing function that requires only one or two Fourier components in space.
This should in no way compromise the value of the solution for model verification
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purposes. The one-dimensional solutions provide an even simpler means of m
verification when the effects of friction, bathymetry or wind, or all three
of interest. The one-dimensional polar solutions give the added benefit
solution that is one-dimensional for analytic purposes but which is two-dimensi
with curvilinear boundaries for models that use Cartesian coordinates.
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