Using a Multi-Resolution Approach to Improve the Accuracy and Efficiency of Flooding Predictions

Ajimon Thomas1, J.C. Dietrich1, T.G. Asher2, M. Bell3, B.O. Blanton4, J.H. Copeland3, A.T. Cox5, C.N. Dawson6, J.G. Fleming7, M. Loveland6, R.A. Luettich2

1Civil, Construction and Environmental Engineering, North Carolina State University
2Institute of Marine Sciences, UNC Chapel Hill, 3WeatherFlow Inc.
4Renissance Computing Institute, UNC Chapel Hill; 5Oceanweather Inc.
6Institute of Computational Engineering and Sciences, UT Austin; 7Seahorse Coastal Consulting
Outline

Part I
• Validate winds, waves and water levels during Matthew on a mesh with floodplains coverage over a large extent

Part 2
• Multi-resolution approach to improve the accuracy and efficiency of flooding predictions
Part I
Introduction

Matthew
- Category-5 storm
- Impacted the south-east coast of the U.S. during October 2016
- Shore-parallel storm
- Large variations in water levels lasting several days
Methods

• Coupled ADCIRC + SWAN model
• ADCIRC
 – Solves the generalized wave continuity equation (GWCE) for water levels (ζ)
 – Solves the depth-averaged momentum equations for currents (U,V)
 – Geographic space is represented using Piecewise-linear, continuous, Galerkin finite elements
• SWAN
 – Solves the action balance equation
Methods

- The HSOFS unstructured mesh
 - Riverside, AECOM & NOAA - 2015
 - 500m average coastal resolution
 - 1.8 million vertices
Methods

- Winds from OWI
 - Data-assimilated fields
 - Basin grid at resolution of 1/4°
 - Region grid at resolution of 1/20°

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error</th>
<th>GAHM</th>
<th>WF</th>
<th>OWI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Pressure</td>
<td>RMSE (hPa)</td>
<td>6.72</td>
<td>4.23</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.16</td>
<td>-0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>RMSE (m/s)</td>
<td>5.60</td>
<td>2.98</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>Bias</td>
<td>-0.29</td>
<td>0.16</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Model Validation – Observations

<table>
<thead>
<tr>
<th>Saffir-Simpson Category</th>
<th>Symbol</th>
<th>Wind Speed (ms(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>▷</td>
<td>59-69</td>
</tr>
<tr>
<td>3</td>
<td>▶️</td>
<td>50-58</td>
</tr>
<tr>
<td>2</td>
<td>◆</td>
<td>43-49</td>
</tr>
<tr>
<td>1</td>
<td>◈</td>
<td>33-42</td>
</tr>
</tbody>
</table>

Symbol Legend:

- WL
- WL + MET
- MET
- MET + WH
- WH
Model Validation – Waves

16 stations, RMSE of 0.46m, Bias of 0.11
Model Validation – Water Levels

241 stations, RMSE of 0.28m, Bias of 0.04
Model Validation – High Water Marks

622 peaks
$R^2 = 0.78$
RMSE = 0.28m
Bias = -0.03
Best fit slope = 0.96
Part I - Conclusions

- Matthew’s effects are well represented by the model even when applied on the relatively-coarse HSOFS mesh

Part II
Motivation

#1 Need for Higher Resolution

#2 Need for Faster Forecasts
Motivation

Need for higher resolution

1. Experience from hindcasts of Hurricane Matthew
Motivation

Need for higher resolution
1. Forecasting during Hurricane Florence (2018)
 - HSOFS mesh was used when the storm was far away (up till Advisory 41)
 - As the storm approached the NC coast, NC9 mesh was employed (starting from Advisory 42)
Motivation

#1 Need for Higher Resolution

#2 Need for Faster Forecasts
Motivation

Need for Faster Forecasts

1. Ensemble Possibilities
 - For each advisory, there is uncertainty in the storm parameters, which translates directly into uncertainty in the predicted surge
 - SLOSH computes Probabilistic Storm Surge (P-surge) in real-time
 - Includes uncertainty in track/landfall location, forward speed, intensity, and historical errors
 - Results are approximately 30 minutes after full advisory release time
 - ASGS runs only a few variations (e.g., veer-left, veer-right)
 - Faster simulations will allow for more scenario-testing, which can help in reducing uncertainties in the forecast results (Leutbecher and Palmer, 2008)

 - Made landfall in southeast Texas
 - When the storm was in Gulf, high-res mesh (6.7 million elements) for Texas was used
 - Tidal spin-up on this mesh even on 1120 cores at TACC, took 18 hours
 - By this time, the storm had already moved inland
The Multi-Resolution Approach

Current Forecasting Technique

- Save the state of the simulation right at the nowcast point (end of the hindcast)
- Reload this saved state during the next advisory cycle to avoid having to start the simulation from the beginning
- The system thus always builds on previous results
- The hot-starts have to be always done on the same mesh
- This prevents use of high resolution meshes without having to run tidal spin-up that take several hours of computational time

Source: Fleming, 2008
The Multi-Resolution Approach

Steps
• Use a relatively coarse resolution when the storm is far
• As the storm approaches the coastline, switch to a fine-resolution mesh without doing a cold-start
• Map results from the coarse to the fine mesh and continue the simulation on the fine mesh

Main Objectives
• Reduce the computational load by using a coarser resolution mesh when the storm track is uncertain
• Increase the accuracy of predictions by using a higher resolution mesh as the storm approaches landfall
• Increase the simulation possibilities including ensemble generation during operational forecasting
The Multi-Resolution Approach

Adcirpolate

• A toolset for interpolating between meshes
• Developed by our collaborators at U.T. Austin
• Implemented via the Earth System Modeling Framework (ESMF)
 • Allows for parallel interpolation between unstructured meshes
• Interpolation is done bilinearly in region destination points
• Extrapolation is done for the remaining points with nearest source to destination
• Proper checks to take care of wetting/drying state of elements
• Convert the hot-start file from the coarse mesh simulation to a hot-start file for the fine mesh simulation
The Multi-Resolution Approach

Initial Results

• When Matthew is away from NC (first 6 days), use the coarse/source mesh
• As the storm approaches NC, use adccirpolate to map the coarse/source data onto the fine/destination mesh
• Continue simulation on fine mesh for 3 days

Source Mesh: 616,113 nodes

Destination Mesh: 784,911 nodes
Initial Results

coarse

fine

mixed
Initial Results

1 Oregon Inlet

2 Hatteras

4 Wilmington

3 Beaufort
Initial Results

- On 532 cores,
 - Coarse Mesh
 - 9 days of winds 24 mins
 - Mixed Approach
 - 6 days of winds on coarse mesh 17 mins
 - Switching 1 min
 - 3 days of winds on fine mesh 10 mins
 - So total = 28 mins
 - Fine Mesh
 - 9 days on winds 30 mins

- Results from the mixed run are close to the ‘true’ solution of all 3 days on the fine mesh
Thank You!