Using a Multi-Resolution Approach to Improve the Accuracy and Efficiency of Flooding Predictions

Ajimon Thomas¹, J.C. Dietrich¹,

T.G. Asher², M. Bell³, B.O. Blanton⁴, J.H. Copeland³, A.T. Cox⁵, C.N. Dawson⁶, J.G. Fleming⁷, M. Loveland⁶, R.A. Luettich²

¹Civil, Construction and Environmental Engineering, North Carolina State University
²Institute of Marine Sciences, UNC Chapel Hill, ³WeatherFlow Inc.
⁴Renissance Computing Institute, UNC Chapel Hill; ⁵Oceanweather Inc.
⁶Institute of Computational Engineering and Sciences, UT Austin; ⁷Seahorse Coastal Consulting

Outline

Part I

• Validate winds, waves and water levels during Matthew on a mesh with floodplains coverage over a large extent

Part 2

Multi-resolution approach to improve the accuracy and efficiency of flooding predictions

Part I

Introduction

Matthew

- Category-5 storm
- Impacted the south-east coast of the U.S. during October 2016
- Shore-parallel storm
- Large variations in water levels lasting several days

Methods

- Coupled ADCIRC + SWAN model
- ADCIRC
 - Solves the generalized wave continuity equation (GWCE) for water levels (ζ)
 - Solves the depth-averaged momentum equations for currents (U,V)
 - Geographic space is represented using Piecewise-linear, continuous, Galerkin finite elements
- SWAN
 - Solves the action balance equation

Methods

- Winds from OWI
 - Data-assimilated fields
 - Basin grid at resolution of 1/4°
 - Region grid at resolution of 1/20°

Parameter	Error	GAHM	WF	OWI
Surface Pressure	Stations	282	283	283
	RMSE (hPa)	6.72	4.23	2.14
	Bias	-0.16	-0.02	0.06
Wind Speed	Stations	66	61	66
	RMSE (m/s)	5.60	2.98	2.29
	Bias	-0.29	0.16	0.06

 \diamond

 \diamond

 \diamond

Model Validation – Observations

Symbol	Data	
Symbol	Available	
•	WL	
•	WL + MET	
•	MET	
•	MET + WH	
٠	WH	

Model Validation – Waves

16 stations, RMSE of 0.46m, Bias of 0.11

241 stations, RMSE of 0.28m, Bias of 0.04

10

Model Validation – High Water Marks

Part I - Conclusions

• Matthew's effects are well represented by the model even when applied on the relatively-coarse HSOFS mesh

A Thomas, JC Dietrich, TG Asher, M Bell, BO Blanton, JH Copeland, AT Cox, CN Dawson, JG Fleming, RA Luettich (2018). "Influence of Storm Timing and Forward Speed on Tide-Surge Interactions during Hurricane Matthew." *Ocean Modelling*, 137, 1-19, DOI:10.1016/j.ocemod.2019.03.004.

Part II

#1 Need for Higher Resolution

#2 Need for Faster Forecasts

Need for higher resolution

1. Experience from hindcasts of Hurricane Matthew

Topo-Bathy

Need for higher resolution

- 1. Forecasting during Hurricane Florence (2018)
 - HSOFS mesh was used when the storm was far away (up till Advisory 41)
 - As the storm approached the NC coast, NC9 mesh was employed (starting from Advisory 42)

#1 Need for Higher Resolution

#2 Need for Faster Forecasts

Need for Faster Forecasts

- 1. Ensemble Possibilities
 - For each advisory, there is uncertainty in the storm parameters , which translates directly into uncertainty in the predicted surge
 - SLOSH computes Probabilistic Storm Surge (P-surge) in real-time
 - Includes uncertainty in track/landfall location, forward speed, intensity, and historical errors
 - Results are approximately 30 minutes after full advisory release time
 - ASGS runs only a few variations (eg. veer-left, veer-right)
 - Faster simulations will allow for more scenario-testing, which can help in reducing uncertainties in the forecast results (Leutbecher and Palmer, 2008)
- 2. Hurricane Bill (2015)
 - Made landfall in southeast Texas
 - When the storm was in Gulf, high-res mesh (6.7 million elements) for Texas was used
 - Tidal spin-up on this mesh even on 1120 cores at TACC, took 18 hours
 - By this time, the storm had already moved inland

The Multi-Resolution Approach

Current Forecasting Technique

- Save the state of the simulation right at the nowcast point (end of the hindcast)
- Reload this saved state during the next advisory cycle to avoid having to start the simulation from the beginning
- The system thus always builds on previous results
- The hot-starts have to be always done on the same mesh
- This prevents use of high resolution meshes-without having to run tidal spin-up that take several hours of computational time

The Multi-Resolution Approach

Steps

- Use a relatively coarse resolution when the storm is far
- As the storm approaches the coastline, switch to a fine-resolution mesh without doing a cold-start
- Map results from the coarse to the fine mesh and continue the simulation on the fine mesh

Main Objectives

- Reduce the computational load by using a coarser resolution mesh when the storm track is uncertain
- Increase the accuracy of predictions by using a higher resolution mesh as the storm approaches landfall
- Increase the simulation possibilities including ensemble generation during operational forecasting

The Multi-Resolution Approach

Adcirpolate

- A toolset for interpolating between meshes
- Developed by our collaborators at U.T. Austin
- Implemented via the Earth System Modeling Framework (ESMF)
 - Allows for parallel interpolation between unstructured meshes
- Interpolation is done bilinearly in region destination points
- Extrapolation is done for the remaining points with nearest source to destination
- Proper checks to take care of wetting/drying state of elements
- Convert the hot-start file from the coarse mesh simulation to a hot-start file for the fine mesh simulation

The Multi-Resolution Approach

- When Matthew is away from NC (first 6 days), use the coarse/source mesh
- As the storm approaches NC, use adcirpolate to map the coarse/source data onto the fine/destination mesh
- Continue simulation on fine mesh for 3 days

- On 532 cores,
 - Coarse Mesh
 - 9 days of winds 24 mins
 - Mixed Approach
 - 6 days of winds on coarse mesh 17 mins
 - Switching 1 min
 - 3 days of winds on fine mesh 10 mins
 - So total = 28 mins
 - Fine Mesh
 - 9 days on winds 30 mins
- Results from the mixed run are close to the 'true' solution of all 3 days on the fine mesh

Thank You!