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ive Modeling for Hurricane Waves and Storm Surge

ide Range of Spatial Scales

Waves and Storm Surge
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Wide Range of Spatial Scales
Gulf and Atlantic Coasts
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Wide Range of Spatial Scales

Unstructured, Finite-Element Meshes
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Consider all of these spatial scales by using unstructured meshes:
— Represent the sea surface as triangular finite elements

— Vary element sizes to increase resolution in regions of interest
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Wide Range of Spatial Scales
SL16 Mesh for Southern Louisiana
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Waves and Storm Surge
Temporal Scales

Sea surface can be described with both long and short waves
» Long waves due to tides, storm surge
» Short waves due to wind (swell and wind-sea)
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Waves and Storm Surge
ADvanced CIRCulation (ADCIRC)
For long waves, we use ADCIRC
» Does represent the phases of tides and/or storm surge
Solves the generalized wave continuity equation (GWCE) for water levels (:
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Solves the depth-averaged momentum equations for currents (U, V):
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Waves and Storm Surge
ADCIRC Discretization

In geographic space:
» Piecewise-linear, continuous, Galerkin finite elements
» Unique values for (¢, U, V) at every mesh vertex

» Typical minimum mesh spacings of 10 to 50 m

In time:
» Semi-implicit
» Implicit solution of GWCE using Jacobi Conjugate Gradient (JCG) solver
» Explicit solution of momentum equations with lumped mass matrix
» Fully explicit
» Also possible to use lumped mass matrix for solution of GWCE

> Typical time steps of 0.5 to 10 sec



Waves and Storm Surge
ADCIRC Solution Algorithm

Time Step Loop

Gi ized Wave Continuity Equation

Build GWCE Matrix System
WV Take Dot-Product of GWCE Diagonal Vector for Scaling
O Update GWCE Matrix System at Inter-Core Boundaries

Use Jacobi Conjugate Gradient (JCG) Method to Solve for Water Levels

O Update Residual Vector at Inter-Core Boundaries
WV Take Dot-Product of Residual Vector
If Converged, then Exit Iteration Loop

O Update Water Levels at Inter-Core Boundaries

‘Wetting and Drying

Wet/Dry the Vertices and Elements Based on Updated Water Levels

O Update

Wet/Dry State at Inter-Core Boundaries

'V Determine if Wetting/Drying has Occurred on Any Core

(oo o)

Solve Explicitly on each Core
O Update Currents and Fluxes at Inter-Core Boundaries

1




Waves and Storm Surge
Simulating WAves Nearshore (SWAN)

For short waves, we use SWAN
» Does not represent the phase of each individual wave
» Conserved quantity is the action density N (t, x, y, o, )
» Can be integrated to compute statistical wave properties

Solves the action balance equation:

oN dcgN  Oc, N

Solution methods in geographic (x, y) and spectral (o, 6) spaces:
» Gauss-Seidel in geographic space

> lterative solution of matrix system in spectral space

=0



Waves and Storm Surge
Tight Coupling of SWAN+ADCIRC

WINDS: Forecasts from the NHC used to
generate internal wind fields; or else can
read hindcast winds in a variety of formats.

TIDES: Tidal potential RIVER FLOW: Rates specified
and harmonic at river flux boundaries.
constituents specified
at ocean boundaries.

[ UNSTRUCTURED COMPUTATIONAL MESH ]

Vv Al
e ) , WAVE STRESSES ( SWAN
Finite-element model solves |~ Finite-difference model solves
continuity and momentum WIND SPEEDS action balance equation;
equations for Jong waves CU%’:’QAEL'?_RVLEFT_\{)%?_IES integrated solution represents
(tides, storm surge). ) ROUGHNESS LENGTHS \shoﬂ waves (wind-sea, swell).

OUTPUT: Water levels, currents, wave radiation stresses,

wind speeds, significant wave heights, peak wave periods
provided in formats such as ASCII, binary, NetCDF.




Engineering Applications
Surge Barrier Design with the USACE
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Engineering Applications
Floodplain Risk Maps for FEMA

Joint Probability Method with Optimal Sampling (JPM-0S):

» Hypothetical storms with varying characteristics

» Combine results to develop 100-yr flood maps




Engineering Applications
Floodplain Risk Maps for FEMA
Joint Probability Method with Optimal Sampling (JPM-0S):
» Hypothetical storms with varying characteristics

» Combine results to develop 100-yr flood maps

SL15V3_2007_r10
Storm 285
Max. Water Level (Ft)

Max =21.75 1t

Storm 285:

- Radius to max winds: 17.7 Nmi

- Minimum central pressure: 900 mb
|
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Unstructured, Finite Element Mesh

Real-Time Forecasting for North Carolina
Hurricane Florence (2018)



Unstructured, Finite Element Mesh

Western North Atlantic Ocean
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Unstructured, Finite Element Mesh

South Atlantic Bight
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Hurricane Florence (2018)

- Union Point in New Bern NC (@NWSEastern)
Extensive Impacts to Coastal NC |

Surf City NC (@AdamWGME)

Florence making landfall on Fri Sep 14 (@NOAASatellites)


https://twitter.com/NOAASatellites/status/1040595993098682369
https://twitter.com/NWSEastern/status/1040370440760446976
https://twitter.com/AdamWGME/status/1041482740384903168

Hurricane Florence (2018)

Surge and flooding guidance from the National Hurricane Center (NHC)
Forecasts of Storm Surge i7 7 e g < :

&@ Coastal Emergency s Assessmen

Huricane FLORENCE, Advisory
ey = .
3 & g B sackground wap
» Tropical Cyclone Activy

Water Height above MSL.
Swenquarter

© Maximum Water Hoignt @
@ Wt Heightat DatelTine. @

-~ Ocragsre
Fayettevile 12-Sep-2018 5PMEDT -

Hope Ml

Suer 5!9 14, sm}“ 1AM,

" 14.5AM
).unum\ oy i e
\ﬁsngi 1M Ko Sep 1t 13,11PM
Sep 15,5 PMSep 15, 11 AM
) @) gis.sm

ADCIRC maximum water levels for Advisory 54 (CERA)

» Inundation Depth above Ground

» Significant Wave Height


https://goo.gl/a4Ub77
https://twitter.com/NHC_Atlantic/status/1040262760607703040

Hurricane Florence (2018)
ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time
— Everything happens automatically
— Models are initialized, run, and processed by Perl scripts
Wind fields from two sources:

— Under normal conditions:

— Downloaded from NAM model output by NOAA/NCEP
— Converted into format compatible with SWAN-+ADCIRC

— Under storm conditions:

— Download advisories from NOAA/NHC
— Generate wind fields using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:
— Send directly to stakeholders (NC Emergency Management)

— Share publicly via web service (http://www.adcirc.org)


http://www.adcirc.org

Hurricane Florence (2018)
Adv 48 — Sep 11 Tue 5am

Water Height (ft)
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Hurricane Florence (2018)
Adv 50 — Sep 11 Tue 5pm
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Hurricane Florence (2018)
Adv 52 — Sep 12 Wed 5am
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Hurricane Florence (2018)
Adv 54 — Sep 12 Wed 5pm

Water Height (ft)
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Hurricane Florence (2018)
Adv 56 — Sep 13 Thu 5am

Water Height (ft)
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Hurricane Florence (2018)
Best-Track Hindcast
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Domain Decomposition
What About the Dry Regions?

Example ADCIRC simulation for Hurricane lke (2008):
— The mesh (on left) includes floodplains along the entire Texas coastline
— About 1/2 is wet at the start, and only 2/3 is wet at the peak inundation (on right)
— What can we do with the 1/3 of the mesh that is never used?




Domain Decomposition
Schematic of Parallel Communication

INTRA-MODEL
INTER-CORE

NEIGHBOR CORE




Domain Decomposition
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Domain Decomposition

Integration with Zoltan Library

Working closely with the Notre Dame team
— Keith Roberts, Joannes Westerink

Integrated the Zoltan toolkit with ADCIRC
— Parallel, dynamic load balancing
— At checkpoints, rebalance for latest workload

— Migrate information between CPUs

Progress in the past year:
— Streamlined the migration
— Hardened the integration

— Expanded the testing

0
o

4
i

X/

v
</

<\J

N

g

X
i
X5

5

D

2\
\/]

)

7

o
R0

XX
AR



http://www.cs.sandia.gov/zoltan/Zoltan.html

Examples of Efficiency Gains
Simple Tide in ldealized Channel

30.1°
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30°
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Simple channel and floodplain
— Depths from -4 m to +2 m
— Tidal range from -1 m to +1 m
— Expect a lot of wetting and drying

Initial decomposition is sub-optimal
— 4 CPUs start fully wet
— 5 CPUs start partly wet/dry
— 6 CPUs start fully dry

Wall-clock time of about 17.6 min
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Examples of Efficiency Gains
Simple Tide in ldealized Channel

Now the workload is rebalanced
— Total of 28 migration events

— Total of 11 sec doing migration

Rebalancing during first tidal cycle
— Need to weigh cost vs benefit

— If an element is in the inter-tidal zone,
then keep it wet

Wall-clock time of 11.2 min
— Speed-up of 36 percent!
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Examples of Efficiency Gains
Florence (2008) in North Carolina
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Summary
Forecasting and Mapping of Coastal Flooding during Hurricanes

Real-time forecasting for coastal North Carolina:
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— Available at: www.adcirc.org
— Matthew (2016), Harvey & Irma (2017), Florence & Matthew (2018)

— Providing guidance for multiple states
— Every advisory and perturbations

— Working with NCEM to support their decision-making
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Dynamic load balancing:
— Need to weigh cost vs benefit
— Revised to minimize number of rebalances
— Careful to select buffer between wet/dry

— Timings are encouraging
— Large speed-ups (near theoretical) without sacrificing accuracy



www.adcirc.org
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