Downscaling and Extrapolation of Hurricane Flooding Forecasts to Support Decision-Making

N Tull*¹, **JC Dietrich**¹, TE Langan², H Mitasova³, CA Rucker*¹, BO Blanton⁴, JG Fleming⁵, RA Luettich⁶

¹Dep't of Civil, Construction, and Environmental Engineering, NC State Univ
 ²North Carolina Floodplain Mapping Program, NC Emergency Management
 ³Dep't of Marine, Earth, and Atmospheric Sciences, NC State Univ
 ⁴Renaissance Computing Institute
 ⁵Seahorse Coastal Consulting
 ⁶Institute for Marine Sciences, UNC Chapel Hill

Geospatial Forum, Center for Geospatial Analytics NC State Univ. 18 October 2018

Hurricane Florence (2018)

Unstructured Mesh for North Carolina Models for Hurricane Waves and Storm Surge Real-Time Forecasts

Enhancing Resolution of Flooding Guidance

Motivation for Research Project Downscaling and Extrapolation Examples in Carteret County

Application and Validation for Entire NC Coast

Enhanced Real-Time Guidance Comparisons with High-Resolution ADCIRC

Summary and Future Work

4 D > 4 B > 4 E >

Unstructured Mesh for North Carolina Western North Atlantic Ocean

Unstructured Mesh for North Carolina Outer Banks & Neuse River Estuary

Models for Hurricane Waves and Storm Surge Tight Coupling of SWAN+ADCIRC

Real-Time Forecasts ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time

- Everything happens automatically
 - Models are initialized, run, and processed by Perl scripts

Wind fields from two sources:

- Under normal conditions:
 - Downloaded from NAM model output by NOAA/NCEP
 - Converted into format compatible with SWAN+ADCIRC
- Under storm conditions:
 - Download advisories from NOAA/NHC
 - Generate wind fields using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:

- Send directly to stakeholders (NC Emergency Management)
- Share publicly via web service (http://www.adcirc.org)

Hurricane Florence (2018)

Unstructured Mesh for North Carolina Models for Hurricane Waves and Storm Surge Real-Time Forecasts

Enhancing Resolution of Flooding Guidance

Motivation for Research Project Downscaling and Extrapolation Examples in Carteret County

Application and Validation for Entire NC Coast Enhanced Real-Time Guidance Comparisons with High-Resolution ADCIRC

Summary and Future Work

Motivation for Research Project

So .. What is the Problem?

Motivation for Research Project Differences in Horizontal Resolution

We want to enhance the flooding guidance we provide to NCEM

- Now we provide water levels at our model resolution
 - Use an unstructured mesh with unequal spacings
 - More than 600K points
 - Minimum spacing of about 50 to 100 m
- NCEM wants to combine with other datasets
 - Use a structured raster with equal spacing
 - More than 400M cells
 - High-resolution topography with spacings of 50 ft (or smaller!)

Need to do two things:

- 1. Downscale Increase resolution to match their high-resolution topography datasets
- 2. Extrapolate Extend our flooding guidance into small-scale coastal regions that cannot be represented by our model

Motivation for Research Project Downscaling and Extrapolating the Coastal Flood Forecasts

Motivation for Research Project Goal and Objectives

Goal:

- Enable data-driven decision-making for coastal communities during storm events

Objectives:

- Extrapolate ADCIRC results to intersect higher resolution DEM
- Create fully-automated process to be run during real-time forecasting
- Enable process to run in 10-20 minutes for each forecast
- Use open-source software for transferability
- Share enhanced guidance with NCEM

Downscaling and Extrapolation Raster Method

We used the Geographic Resources Analysis Support System (GRASS):

- Available as open-source software (https://grass.osgeo.org)
- Developed by Prof. Mitasova and researchers in the Center for Geospatial Analytics
- Extremely fast for raster processing

Then the general steps were:

- Interpolate ADCIRC points to raster at resolution of DEM (50 ft)
- Extrapolate water levels into small-scale channels and floodplains
 - Expand the raster outward only where the water levels are higher than the ground
 - Remove isolated (not hydraulically-connected) cells
- Convert the new "grown" raster to polygon format for distribution

Downscaling and Extrapolation Example with Simple DEM and Water Levels

Downscaling and Extrapolation Example with Simple DEM and Water Levels

Downscaling and Extrapolation Example with Simple DEM and Water Levels

Downscaling and Extrapolation Details on Process – Interpolation into GRASS

The first interpolation step is costly

- Need to take water levels from the ADCIRC mesh vertices
 - About 600,000 vertices for NC
- And interpolate water levels onto 50-ft raster DEM
 - About 28 million cells for Carteret County
 - About 434 million cells for NC
- This process is slow
 - We use a file with pre-computed, inverse-distance weights
 - It still takes 5 min for each forecast

The new raster is imported into GRASS:

- Raster is extrapolated using a modified version of the module "r.grow"
- Only hydraulically-connected, flooded cells are retained

Downscaling and Extrapolation Details on Process – Modifications within GRASS

We made some changes within the GRASS software:

- Normally, the r.grow function expands a raster outward
 - Fills surrounding cells with values taken from the outermost cells of the original raster
 - A radius in number of cells is specified
- Our modified version allows for expanding into null cells only if the ADCIRC cell value is greater than the value of the DEM
 - Water level must be higher than ground surface
- After "growing" by a sufficiently large radius, isolated cells are removed if they do not overlap with any part of the original raster
 - Enforce a hydraulic connectivity

Then we convert back to polygons

- Expanded water surface is binned into 0.5-ft intervals
- Enhanced guidance is saved as a shapefile

Examples in Carteret County Testing in a Realistic Setting

Consider the enhanced guidance on Carteret County

- One of 32 NC coastal counties that includes at least some part of the ADCIRC mesh
- Chosen for its complexity; contains barrier islands, estuaries, low-lying topography

Examples in Carteret County Zoom of Cape Lookout National Seashore

Examples in Carteret County

Zoom of Cape Lookout National Seashore

Examples in Carteret County

Zoom of Cape Lookout National Seashore

Examples in Carteret County Newport River

Examples in Carteret County Cedar Island

Examples in Carteret County Analysis of Impacted Buildings

We can intersect the flooding guidance with known buildings

- NCEM has compiled a database of infrastructure in every NC county
- Building footprint, first floor elevation, etc.
- Used for their planning during and after storm events

We can analyze the number of buildings covered by our flooding prediction for a Hurricane Matthew hindcast

Before enhancement: 2,435 buildings

After enhancement: 3,886 buildings

This is an increase of 60 percent

Hurricane Florence (2018)

Unstructured Mesh for North Carolina Models for Hurricane Waves and Storm Surge Real-Time Forecasts

Enhancing Resolution of Flooding Guidance

Motivation for Research Project
Downscaling and Extrapolation
Examples in Carteret County

Application and Validation for Entire NC Coast Enhanced Real-Time Guidance Comparisons with High-Resolution ADCIRC

Summary and Future Work

4 D > 4 B > 4 E >

Enhanced Real-Time Guidance Parallel Script for Fast Execution

We need the method to be fast:

- Interpolation of ADCIRC points to raster format is most time-consuming part of process, even with precomputed weights
- Entire process was taking 30-40 minutes at first, and clearly needed to be parallelized:
 - Scripts were tweaked to allow for parallel processing on up to 16 CPUs
 - $-\,$ DEM was divided into horizontal strips with overlap of 500 cells
- Some aspects cannot be parallelized
 - Final conversion into 0.5-ft polygons
- With parallelization, the entire process now takes 12-15 minutes to run on the NCSU computing cluster

Enhanced Real-Time Guidance

Albemarle Sound

Enhanced Real-Time Guidance

We are now providing the enhanced guidance to NCEM

- During hurricane season, we use an automated script on our cluster at NCSU:
 - Detects when ADCIRC results are posted to the archive
 - Downloads the maximum water levels
 - Runs the enhanced-resolution process
- Recent storms:
 - 2017 Harvey & Irma
 - 2018 Florence & Michael

Future work – Integrate this script into the ADCIRC Surge Guidance System (ASGS)

Comparisons with High-Resolution ADCIRC Evaluating Accuracy using a Refined Mesh

Our process does not incorporate physics

If we could run ADCIRC at a similar 15-m resolution, then how would the results compare?

To answer this, we developed a refined mesh for Dare County, NC

- Modified from our existing mesh
- Overland vertices in Dare County correspond exactly to DEM cells via a 1-to-1 conversion
- Contains 5.7 million vertices

Comparisons with High-Resolution ADCIRC Enhanced Resolution vs Refined Mesh

Base

Enhanced

Refined

Comparisons with High-Resolution ADCIRC Flooding Comparison in Dare

We can compare the flooding extents:

	Area, km^2 (%)
Base	185 (18.6)
Enhanced	291 (29.2)
Refined	133 (13.4)

which lead to some interesting findings:

- Base is already over-predicting!
- Enhanced is making it worse!

What is happening here?

Comparisons with High-Resolution ADCIRC Inland Dare Comparison

Comparisons with High-Resolution ADCIRC Hatteras Island Comparison

	Area, km^2 (%)
Base	0.6 (2.2)
Enhanced	3.8 (14.4)
Refined	3.0 (11.5)

Base

Enhanced

Refined

Hurricane Florence (2018

Unstructured Mesh for North Carolina Models for Hurricane Waves and Storm Surge Real-Time Forecasts

Enhancing Resolution of Flooding Guidance

Motivation for Research Project Downscaling and Extrapolation Examples in Carteret County

Application and Validation for Entire NC Coast

Enhanced Real-Time Guidance Comparisons with High-Resolution ADCIRC

Summary and Future Work

Summary and Future Work Predictive Models for Storm Surge and Flooding Risks

Real-time forecasting for coastal North Carolina:

- Available at: www.adcirc.org
- Matthew (2016), Harvey & Irma (2017), Florence & Matthew (2018)
 - Providing guidance for multiple states
 - Every advisory and perturbations
- Working with NCEM to support their decision-making
 - Downscale our model results to 50-ft DEM
 - Extrapolate into small-scale channels and floodplains
 - Provide automatically as GIS shapefiles
- Investigating ways to improve our enhanced-resolution technique

