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About Me

Arrived at NC State in Fall 2013

Research Interests

Coastal & Computational Hydraulics Team
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What We Do Join Our Team FigureGen Kalpana SWAN+ADCIRC

What We Do

CCHT faculty and students develop computational models for wind waves and coastal circulation,
and then apply these models to high-resolution simulations of ocean behavior.

Oceans and coastal regions play a critical role in the world's economic and social activity, but we
are still learning how to live and interact sustainably with these complicated systems. Natural
disasters like hurricanes devastate a region within a few hours or days, whereas slower processes
like sediment deposition transform a region over many years. Small changes have unintended
effects over localized regions, and, taken together, affect entire basins.

MEET OUR TEAM

Faculty
Casey Dietrich | Fosts | CV

Graduate Students
Rosemary Cyriac | Posts | CV
Ajimon Thomas | Posts | CV
Alireza Gharagozlou | Posts | CV/
Johnathan Woodruff | Posts | CV
Autumn Poisson | Posts | CV
Carter Rucker | Posts | CV

Alumni

» Application of unstructured mesh based numerical models to predict the tide,
wind, wave and density driven hydrodynamics in the coastal ocean

4 Introduction — About Me
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Storm Surge Modeling

Winds and Storm Surge during Arthur (2014)

07/01/2014
13:00:00

60.00 m/s

NC STATE UNIVERSITY

36°

35°

=77 -76°

R. Cyriac et al., Variability in coastal flooding predictions due to forecast errors
during Hurricane Arthur, Coastal Engineering, 137, 59-78, (2018).

5 Introduction — Storm Surge Modeling



Estuaries

“Semi-enclosed coastal bodies of water .... within which sea water is
measurably diluted with fresh water .....” (Cameron and Pritchard, 1993)

Source: LibreTexts geosciences library

6 Background & Motivation - Estuaries


https://geo.libretexts.org/@api/deki/files/195/WDE_Positive_hydro.jpg?revision=1

Oil Spill Effects Along the Coast
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Choctawhatchee Bay and Destin Inlet

' Oka!oosa County
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(1) Western Choctawhatchee Bay
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(3) Eastern Choctawhatchee Bay




Surfzone Coastal Oil Pathways Experiment (SCOPE)
Field experiment performed by CARTHE scientists in December 2013

* To study factors that influence the near-shore surface transport
* Including drifter releases, CTD casts, aerial surveys etc.

CONSORTIU




Plume Dynamics at Destin Inlet

Source: CARTHE Facebook page

* SCOPE satellite SAR imagery shows visible plume at Destin Inlet
* Plume dynamics influence surface transport pathways in the shelf


https://www.facebook.com/CARTHE.GoMRI/

Insights from SCOPE : Ebb-Phase Drifter Movement
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Source: Roth et al. 2016
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Insights from SCOPE : Plume as natural barriers

-
-
-
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Surface
Qil Patch

yource: Roth et al. 2016

* Plume dynamics influence the transport and eventual fate of surface material

* Knowledge of plume behavior useful for oil response operations, fisheries
management etc.



Salinity Transport within Choctawhatchee Bay

* Most estuarine species thrive
within limited ranges of estuarine
salinities

* Knowledge of estuarine
salinities critical for resource
management

e Limited knowledge about salinities
within Choctawhatchee Bay
 Stratified conditions with
limited flushing (Livingston,
1986)
e Zones of distinct salinity
gradients (Hoyer 2010)

13 Background & Motivation — Estuarine Salinities
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Research Focus

1. Estuarine Plume Dynamics at Destin Inlet

2. Salinity Dynamics in Choctawhatchee Bay

Choctawhatchee Bay

Sources: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors




Research Gaps and Hypotheses
Plume Dynamics

How does the plume geometry change in response to passing winter cold fronts
and neap to spring variability in tides?

» Moderately strong and variable winds cause substantial differences in the
plume geometry on consecutive days
» Larger plume when tides change from neap to spring



Research Gaps and Hypotheses

Estuarine Salinity Dynamics

What are the key features of salinity transport within Choctawhatchee Bay during
a period of low river flows?

» Surface salinities within the bay are relatively constant
» Highly stratified conditions with limited flushing (residence time of the order
of weeks or months)



Outline

Model Development
* Introduction to ADCIRC
* Mesh Development and Model Setup

e Model Validation

Plume Dynamics
* Variability in Winds
* Plume Response to changing winds
* Plume Response to neap-spring variability in tides

Estuarine Salinity Dynamics
* Inlet Salinities
e Surface Salinities
e \Vertical Stratification
 Residence Time

Summary and Conclusions



Outline

Model Development
e Introduction to ADCIRC
* Mesh Development and Model Setup
 Model Validation



Methods: Numerical Modeling

ADvanced CIRCulation (ADCIRC)

e Unstructured finite element model used widely for tide & storm surge studies

* 3D baroclinic version has only undergone limited testing

GWOCE ()
3D Shallow Water

Terrain following sigma

) coordinates in the vertical
Equations

(u,v,w)

o=1

3D Baroclinic
ADCIRC

Advection-Diffusion
Equation of State Equation

(Density) (Salinity and
Temperature)




Introduction to 3D baroclinic ADCIRC

[ Idealized lock exchange test ][ Stratified outflows from Dardanelles Strait ]

Kolar et al. 2009

[ Coastal forecast system for Chesapeake Bay ][
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Introduction to 3D baroclinic ADCIRC

[ Idealized lock exchange test ][ Stratified outflows from Dardanelles Strait ]

Kolar et al. 2009
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Recent Improvements to 3D ADCIRC (Dr. Arash Fathi )

Sea surface velocities in the Gulf of Mexico

18.00 days

m/s

Improvements were made to apply this updated code for
shelf- and estuarine-scale modeling in the present study



Mesh Development
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Mesh Development
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Model Setup

Atmospheric
Model (NAM)

ADCIRC Tidal
Database

Choctawhatchee
Basin Alliance
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Wind Stress . . . River
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Heat Flux Discharge
Phase Temperatures Temperatures

!

3D baroclinic ADCIRC model (21 layers)

Diagnostic Prognostic
Nov 1-5 November 5 — December 31



Surface Salinities

30.6" 1

30.5" 1

30.4°

30.3°

28 Model Results — Surface Salinities
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Water Levels
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Vertical Salinities
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Model Validation: Vertical Salinities
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Model Validation: Vertical Salinities
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Model Validation: Vertical Salinities
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Plume Geometry via Satellite Imagery
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Model Validation: Satellite Imagery
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Model Validation: Satellite Imagery
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Drifter Movement
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Model Validation: Drifter Movement
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Outline

Plume Dynamics
* Variability in Winds
* Plume Response to changing winds
* Plume Response to neap-spring variability in tides



Focus Area #1: Plume Dynamics

Research Objectives

How does the plume geometry change in response to passing winter cold fronts
and neap to spring variability in tides?

1. Investigate the response of the ebb-phase plume at Destin Inlet on
consecutive days of near-constant tides and variable wind forcing

2. Investigate the response of the ebb-phase plume at Destin Inlet on
consecutive days of near-constant winds and neap to spring variability in
tides



Variability in Wind Forcing
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Period of near-constant tides and changing winds
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Period of near-constant winds and changing tides
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Outline

Estuarine Salinity Dynamics
* Inlet Salinities
e Surface Salinities
e \Vertical Stratification
 Residence Time



Focus Area #2: Estuarine Salinity Dynamics

Research Objectives

What are the key features of salinity transport within Choctawhatchee Bay during a
period of low river flows?

1. Behavior of the ebb- and flood-phase salinity at Destin Inlet

2. ldentify trends in estuarine surface and bottom salinities from observed
data and model predictions

3. Compute residence times within Choctawhatchee Bay using a lagrangian
particle tracking model forced by surface currents from the validated model



Inlet Salinities: Observed Trends (Valle-Levinson et al. 2015)

9.8 10.0 10.2 10.4
December 2013 (GMT)

* Nearly depth-independent tidal intrusion front
e Salinities change from 20 to 33 psu in 2 hours

* Depth dependent ebb-phase front
e Surface changes lead bottom changes by 3.6 hours

46  Estuarine Salinity Dynamics — Observed Trends



Inlet Salinities: Model Predictions
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Trends in River Discharge
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River Dischar

* River discharge has large seasonal variations

* Periods of high river flows (> 600 m3/s)
» Eg. Feb-March 2013, July-Sept 2013, and April-June 2014

* Periods of low river flows (< 200 m3/s)
» Eg. Oct-Nov 2013, July-Sept 2014, and Aug-Dec 2014



Trends in Bay Salinities from Observed Data (West Bay)
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Trends in Bay Salinities from Observed Data (Mid Bay)
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Trends in Bay Salinities from Observed Data (East Bay)
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Trends in Bay Salinities from Observed Data (Summary)

* During high river flows:
e Surface layer is fresh throughout the bay
* Water column is fresh and well-mixed near the river mouth

* Highly stratified conditions in mid- and west-bay

* During low river flows:

» Surface salinities range between 15-25 psu throughout the bay with fresher
conditions near the river mouth

e Bay is highly stratified with a difference of 10 psu between surface and
bottom salinities



Surface Salinities
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* Surface salinities are relatively constant at around 20 psu
* Freshwater conditions near river mouth



Vertical Stratification (West and Mid Bay)

86.6° W

86.4° W

0

Depths (m)

86.2° W

30.4° N

I,

NVL6

108

20 22 24 26 28 30 02 04 06 08 10 12 14
Days in Nov/Dec

Depths (m)

DES7

108

20 22 24 260 28 30 02 04 06 08 10 12 14
Days in Nov/Dec

0

4 8 12 16 20 24 28 32
Salinities (psu)




Vertical Stratification (West and Mid Bay)
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Residence Time
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It takes about 36 days for a particle released at the river mouth to exit the inlet.

56 Estuarine Salinity Dynamics — Model Predictions



Outline

Summary and Conclusions



Summary and Conclusions

Model Development and Validation

* Recently enhanced baroclinic ADCIRC model applied with improvements to
represent the shelf-estuarine circulation in the vicinity of Choctawhatchee Bay

* Model validation efforts demonstrate model’s ability to represent key features of
the circulation and salinity transport

Plume Dynamics

* Plume geometry on consecutive days is different due to changes in wind & tidal
forcing

* Northerly winds enhance offshore expansion whereas southerly winds
confine plume near the coastline

* Plume expands west along the coastline under prevailing easterly winds

* When wind forcing is disabled the plume expands out radially near the inlet



Summary and Conclusions

Estuarine Salinity Dynamics
* During a period of low river flows
e Surface salinities stay constant throughout the bay except near the river
e At Destin, the ebb-phase plume is surface advected whereas the flood-
phase plume is bottom advected
e Highly stratified conditions inside the bay
e Residence times within the bay are of the order of 1 month
Future Work

* Incorporate more realistic representation of Choctawhatchee River

* Apply a range of different river discharges and investigate bay salinities

Thank Youl



