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Hurricane Sandy devastated the Northeast US coastline in 2012. In New York City, it caused
power outages that affected nearly 2 million people, forced evacuations of 6500 patients from
hospitals and nursing homes, prevented 1.1 million children from attending school for a week,
and disrupted the daily travel of about 11 million commuters (Special Initiative for Rebuilding
and Resiliency, 2013). Many of these impacts were related to flooding of critical infrastructure
(Fig. 1), including nearly 90,000 buildings, and more than $5 billion in damages in the mass
transit system (Bernstein, 2013). The maximum observed water level at the tidal gauge located
at the southern tip of Manhattan was 5.3 m above the station datum and 2.8 m above the
expected tide. This additional water, known as storm surge, was pushed from the open sea
by strong winds during the storm. Sandy was one of several recent storms to cause flooding
along the US Gulf and Atlantic coasts, including Katrina and Rita (2005), Gustav and Ike
(2008), Irene (2011), Isaac (2012), and Hermine and Matthew (2016). Climatic changes are

FIGURE 1 Flooding in Hoboken, New Jersey following Hurricane Sandy. Credit: Liz Roll/FEMA, 2012.
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causing these storms to be larger and more intense, last longer, and move farther northward.
Their impacts will be more severe to communities in coastal regions in the future.

Climate change has its greatest effect on hurricanes through global warming. Hurricanes
act as heat engines (Willoughby, 1999). A hurricane, also known generally as a tropical
cyclone, exchanges heat between two reservoirs: the ocean, which is typically warmer in
the tropical regions where the cyclone is formed, and the atmosphere, which is much colder
at the altitudes near the top of the cyclone. Air is pulled toward the center of the cyclone as
it moves over the ocean, picking up water vapor and heat through turbulence at the air—sea
interface. This warm air rises near the eyewall, cools as it is pushed outward at high
altitudes, and then falls downward to repeat the cycle. Thus hurricanes are sensitive to
the sea surface temperature, and they can strengthen quickly when they move over a patch
of warmer water. There are several ocean currents that contribute warm water to this
process, most notably the Loop Current and Gulf Stream, which connect the warm water
from the Caribbean Sea through the Gulf of Mexico and up the eastern coast of the United
States. And these waters are becoming warmer. More than 90% of the overall increase in
energy due to climate change is stored in the oceans (IPCC, 2013). In regions where tropical
cyclones are likely to form, the sea surface temperatures have increased by several tenths of
a degree Celsius during the past several decades, due primarily to human-caused changes
in greenhouse gases (Santer et al., 2006).

Water expands as it warms, and thus global warming is also a contributor to sea level rise.
The global mean sea level has increased by about 1.8 mm/year since 1900, with a larger
recent increase by about 3 mm/year since 1993 (Church & White, 2011). This sea level rise
is highly variable in location, depending on the local land movement, and it can be larger
in regions where the land is shifting downward. In southeastern Virginia, where ground-
water withdrawals have caused compaction of aquifers, land subsidence has caused more
than half of the relative sea level rise of about 4 mm/year since 1950 (Eggleston & Pope,
2013). These global and local factors contribute to the difficulty in predicting sea level rise
through this century. A simple continuation of recent trends would cause an increase in
global mean sea level of 17 cm by 2100, and the inclusion of additional warming would
further increase this prediction to a range from 28 to 98 cm, depending on the emission sce-
nario (Church et al., 2013). These rising water levels will exacerbate the effects of storm-
induced flooding because they provide a higher base level for the storm surge.

This increase in base water level is made worse by an increase in extreme storm frequency.
Tropical cyclones are not occurring more often, at least according to the historical record and
weather satellite data since the 1970s, but they are becoming more powerful (Frank & Young,
2007). Theory and observations suggest an upper limit on the intensity of tropical cyclones
(Bister & Emanuel, 1998), and climate models show an increase in intensity toward this upper
limit due to anthropogenic global warming (Knutson & Tuleya, 2004). To analyze these
trends, researchers have suggested metrics to combine storm characteristics such as
frequency, intensity, and duration. Power dissipation, which is a measure of the potential
destructiveness of hurricanes, has more than doubled during the past 30 years (Emanuel,
2005). And storms are moving poleward by 50—60 km per decade (Kossin, Emanuel, &
Vecchi, 2014). Thus, when a storm makes landfall in the coastal United States, it is more
powerful and more likely to cause flooding than in the past.
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These trends converged during Hurricane Sandy. In New York City, the sea level rise
during the anthropogenic era has caused the mean flood heights to increase by 1.24 m
(Reed et al., 2015), including by 56 cm during the last 250 years (Kemp & Horton, 2013).
This increase in base flood level has combined with increases in storm potential to push
water toward shore. Flood heights that used to be rare, such as floods that occurred
with a probability of once per 100 years, could increase in frequency to occur once every
4 years in the Northeast United States (Frumhoff, McCarthy, Melillo, Moser, & Wuebbles,
2007) and once every 3—20years in New York City (Lin, Emanuel, Oppenheimer, &
Vanmarcke, 2012). During Sandy, the storm surge and flooding were severe due to the
extreme size of the storm, which became the largest on record (Blake, Kimberlain, Berg,
Cangialosi, & Beven, 2013). Before its landfall on the New Jersey coast, Sandy had
tropical-storm- and hurricane-strength winds that extended 778 km and 333 km from its
center, respectively (Demuth, Demaria, & Knaff, 2006). These tropical-storm-strength
winds had a diameter that was equivalent to the distance from North Carolina to Maine,
and they contained more than twice the energy as Hurricane Ike (2008). These winds
pushed storm surge against the Northeast US coastline, causing flooding of coastal commu-
nities and devastation of critical infrastructure. Hurricane Sandy was an example of recent
trends in natural disasters due to climate change, and it emphasizes the need for research
and investment in resilient communities.
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