Hurricane Wave and Storm Surge Forecasting for the North Carolina Coast

JC Dietrich¹, A Thomas¹, A Gharagozlou¹, MF Overton¹, RA Luettich Jr², JG Fleming³, BO Blanton⁴, C Kaiser⁵

¹Dep't of Civil, Construction, and Environmental Engineering, NC State University
 ²Institute of Marine Sciences, University of North Carolina at Chapel Hill
 ³Seahorse Coastal Consulting, Morehead City, NC
 ⁴Renaissance Computing Institute, Chapel Hill, NC
 ⁵Center for Computation & Technology, Louisiana State University

Johnson C Smith University Charlotte NC, 31 March 2017

Introduction

About Me Hurricane Season 2005

Predictive Modeling of Coastal Flooding

Wide Range of Spatial Scales Models for Hurricane Waves and Storm Surge Engineering Applications

Analyses of Hurricane Matthew (2016)

Real-Time Forecasting Best-Possible Hindcast

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

About Me

North Carolina State University

- ► Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

CCEE Department, Mann Hall, NCSU

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - Assistant Professor: 08/2013 to present

University of Texas at Austin

- Institute for Computational Engineering and Sciences
 - Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

University of Notre Dame

- Civil Engineering and Geological Sciences
 - ► Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - Undergraduate Researcher: 06/1999 to 05/2004

About Me

North Carolina State University

- Civil, Construction, and Environmental Engineering
 - ► Assistant Professor: 08/2013 to present

University of Texas at Austin

- ► Institute for Computational Engineering and Sciences
 - ► Research Associate: 09/2012 to 07/2013
 - ▶ Postdoctoral Researcher: 11/2010 to 08/2012

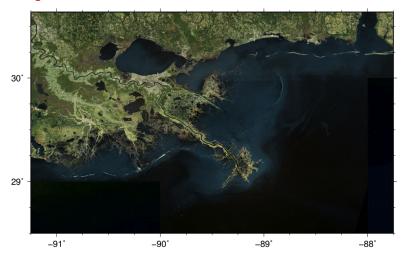
University of Notre Dame

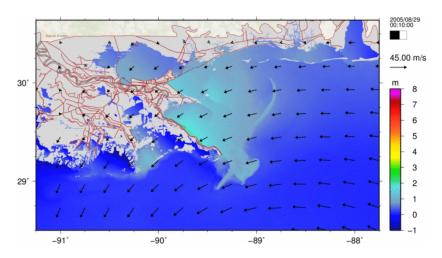
- Civil Engineering and Geological Sciences
 - ► Graduate Researcher: 08/2005 to 10/2010

University of Oklahoma

- Civil Engineering and Environmental Science
 - ► Graduate Researcher: 06/2004 to 07/2005
 - ▶ Undergraduate Researcher: 06/1999 to 05/2004

Hurricane Season 2005 Impacts on Southern Louisiana


Katrina: 08/28 - 08/29



Hurricane Season 2005 Flooding of New Orleans

Hurricane Season 2005 Flooding of New Orleans April/September 2000 30° 13 September 2005 29° -91° -90°

Hurricane Season 2005 Katrina (2005) on 29 August

S Bunya, JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part I – Model Development and Validation. Monthly Weather Review, 138(2), 345-377.

JC Dietrich, et al. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave and Storm Surge Model for Southern Louisiana and Mississippi: Part II – Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378-404.

Introduction

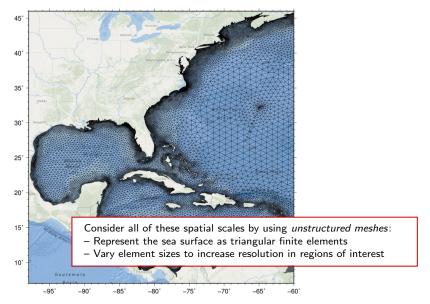
About Me Hurricane Season 2005

Predictive Modeling of Coastal Flooding

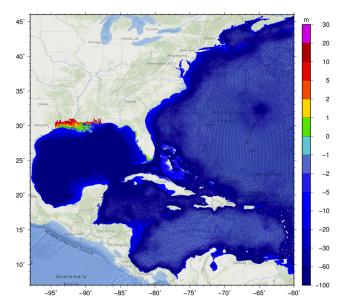
Wide Range of Spatial Scales Models for Hurricane Waves and Storm Surge Engineering Applications

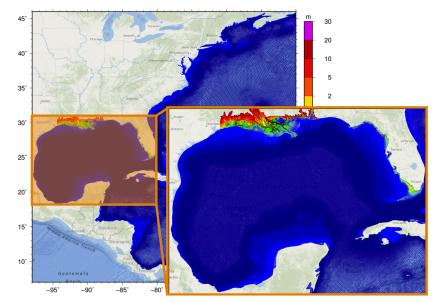
Analyses of Hurricane Matthew (2016)

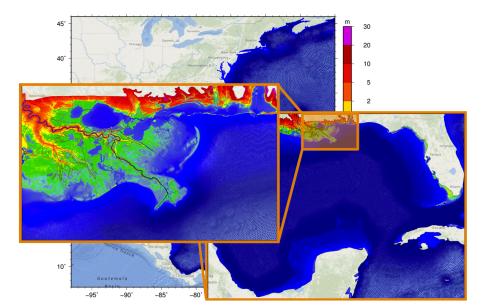
Real-Time Forecasting Best-Possible Hindcast

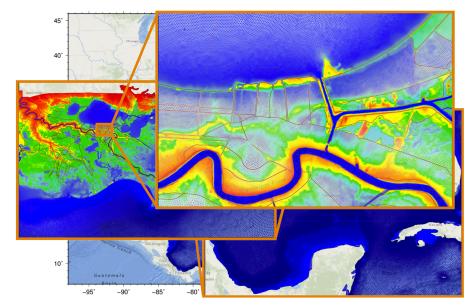

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

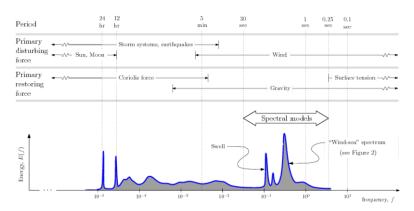

Summary and Future Work


Wide Range of Spatial Scales Unstructured, Finite-Element Meshes


Wide Range of Spatial Scales SL16 Mesh for Southern Louisiana


Wide Range of Spatial Scales SL16 Mesh for Southern Louisiana

Wide Range of Spatial Scales SL16 Mesh for Southern Louisiana


Wide Range of Spatial Scales SL16 Mesh for Southern Louisiana

Models for Hurricane Waves and Storm Surge Temporal Scales

Sea surface can be described with both long and short waves

- Long waves due to tides, storm surge
- Short waves due to wind (swell and wind-sea)

Models for Hurricane Waves and Storm Surge Simulating WAves Nearshore (SWAN)

For short waves, we use SWAN

- Does not represent the phase of each individual wave
 - ▶ Conserved quantity is the action density $N(t, x, y, \sigma, \theta)$
 - ► Can be integrated to compute statistical wave properties

Solves the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\mathbf{x}} \cdot \left[(\mathbf{c}_g + \mathbf{U}) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = 0$$

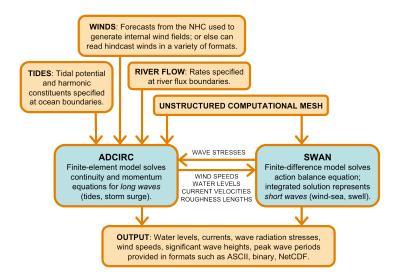
Solution methods in geographic (x, y) and spectral (σ, θ) spaces:

- ► Gauss-Seidel in geographic space
- ▶ Iterative solution of matrix system in spectral space

Models for Hurricane Waves and Storm Surge ADvanced CIRCulation (ADCIRC)

For long waves, we use ADCIRC

▶ Does represent the phases of tides and/or storm surge Solves the generalized wave continuity equation for water levels ζ :


$$\frac{\partial^{2} \zeta}{\partial t^{2}} + \tau_{0} \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_{x}}{\partial x} + \frac{\partial \tilde{J}_{y}}{\partial y} - UH \frac{\partial \tau_{0}}{\partial x} - VH \frac{\partial \tau_{0}}{\partial y} = 0$$

Solves the depth-averaged momentum equations for currents (U, V):

$$\frac{DU}{Dt} - tV = -g\frac{\partial}{\partial x} \left[\zeta + \frac{p_s}{g\rho_0} - \alpha \eta \right] + \frac{\tau_{sx} + \tau_{bx}}{\rho_0 H} + \frac{M_x - D_x}{H}$$

$$\frac{DV}{Dt} + fU = -g\frac{\partial}{\partial y}\left[\zeta + \frac{p_s}{g\rho_0} - \alpha\eta\right] + \frac{\tau_{sy} + \tau_{by}}{\rho_0 H} + \frac{M_y - D_y}{H}$$

Models for Hurricane Waves and Storm Surge Tight Coupling of SWAN+ADCIRC

JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45-65, DOI:10.1016/j.coastaleng.2010.08.001.

Engineering Applications Surge Barrier Design with the USACE

Engineering Applications Surge Barrier Design with the USACE

Introduction

About Me Hurricane Season 2005

Predictive Modeling of Coastal Flooding

Wide Range of Spatial Scales Models for Hurricane Waves and Storm Surge Engineering Applications

Analyses of Hurricane Matthew (2016)

Real-Time Forecasting Best-Possible Hindcast

Considering Erosion of Beaches and Dunes

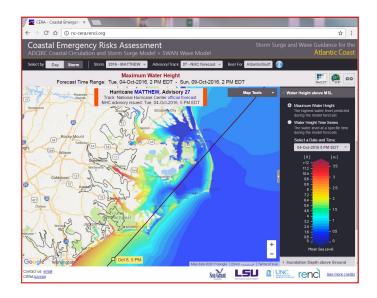
Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

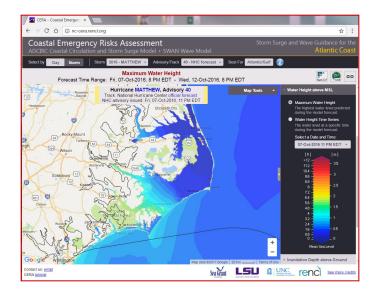
Real-Time Forecasting during Hurricane Matthew ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time via the ASGS

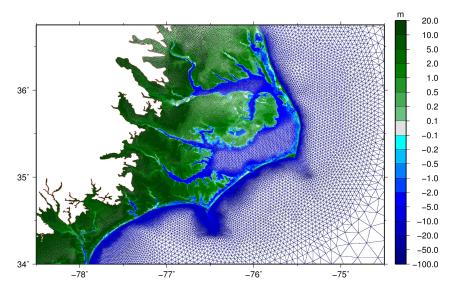
- Everything happens automatically
 - Models are initialized, run and processed by Perl scripts

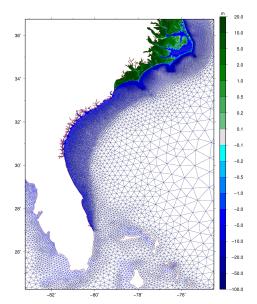

Wind fields from two sources:

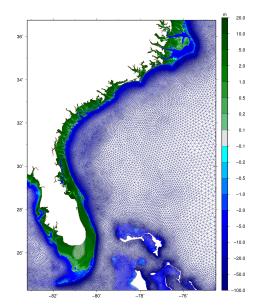
- 1. Under normal conditions:
 - Downloaded from NAM model output by NOAA/NCEP
 - Converted into format compatible with SWAN+ADCIRC
- 2. Under hurricane conditions:
 - Download advisories from NOAA/NHC
 - Generate wind field using parametric model (Holland, 1980)

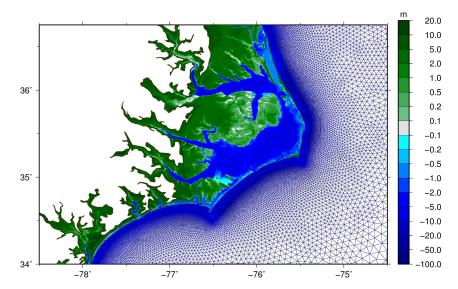

Guidance can be shared in multiple formats:

- Raster images (JPG, PNG, etc.)
- Geo-referenced raster images (Google Earth, GIS)
- Web service (nc-cera.renci.org)

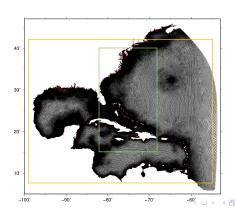

Real-Time Forecasting during Hurricane Matthew Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org


Real-Time Forecasting during Hurricane Matthew Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org

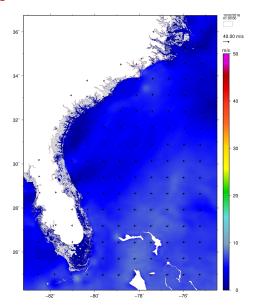

Real-Time Forecasting during Hurricane Matthew High-Resolution Mesh for North Carolina – NC9


Real-Time Forecasting during Hurricane Matthew High-Resolution Mesh for North Carolina – NC9

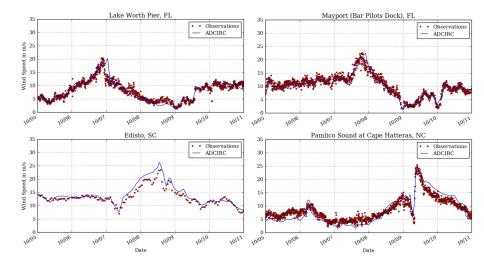
Real-Time Forecasting during Hurricane Matthew Large-Domain Mesh for the U.S. Gulf and Atlantic Coasts – HSOFS

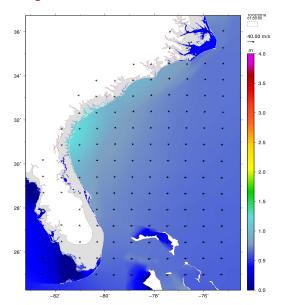


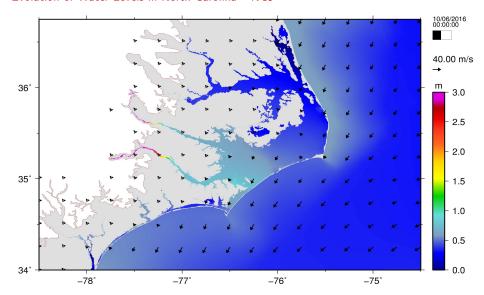
Real-Time Forecasting during Hurricane Matthew Large-Domain Mesh for the U.S. Gulf and Atlantic Coasts – HSOFS

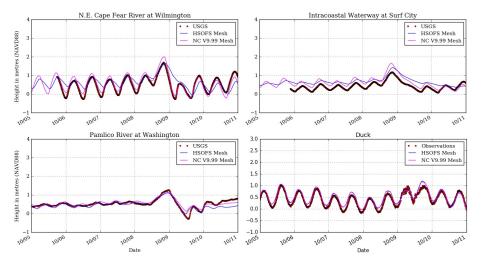


Best-Possible Hindcast of Hurricane Matthew Kinematic Wind Fields


- Highly-accurate fields for surface pressures and wind velocities from Ocean Weather Inc. (OWI)
- Fields provided on multiple grids:
 - Basin: Gulf and western Atlantic, resolution of 0.25°
 - Regional: US east coast to Virginia, resolution of 0.05°


Best-Possible Hindcast of Hurricane Matthew Evolution of Winds Along US East Coast – HSOFS


Best-Possible Hindcast of Hurricane Matthew Wind Speed Comparison from South to North


Best-Possible Hindcast of Hurricane Matthew Evolution of Water Levels Along the US East Coast – HSOFS

Best-Possible Hindcast of Hurricane Matthew Evolution of Water Levels in North Carolina – NC9

Best-Possible Hindcast of Hurricane Matthew Water Level Comparison from South to North

Best-Possible Hindcast of Hurricane Matthew Quantifying the Effect of Mesh Resolution

How does mesh resolution affect the model performance?

Comparison to wind speeds:

Mesh	Stations	RMSE (m/s)
HSOFS	108	1.944
HSOFS	33	2.260
NC9	33	2.367

Comparison to water levels:

Mesh	Stations	RMSE (m)
HSOFS	310	0.295
HSOFS	90	0.264
NC9	90	0.240

Water level predictions are improving when we have better resolution

Introduction

About Me Hurricane Season 2005

Predictive Modeling of Coastal Flooding

Wide Range of Spatial Scales Models for Hurricane Waves and Storm Surge Engineering Applications

Analyses of Hurricane Matthew (2016)

Real-Time Forecasting
Best-Possible Hindcast

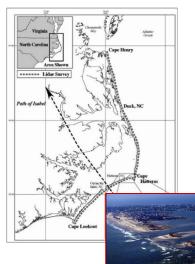
Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Considering Erosion of Beaches and Dunes eXtreme Beach (XBeach): xbeach.org

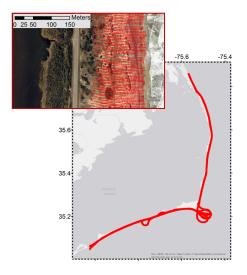
Our forecast system is limited:


- Bathymetry and topography are fixed / constant
- No consideration of beach erosion, dune breaching, etc.
- Flooding impacts are limited behind the dunes

With support from NC Sea Grant, we are coupling with XBeach:

- Open-source model developed in the Netherlands
- Capable of simulating hydrodynamic and morphodynamic processes
- Applied typically at beach scales (a few kilometers)

Exploring Morphodynamics during Isabel (2003) Extensive Erosion and Breaching


We examine storm impacts during Isabel

- Most powerful hurricane in 2003
- Made landfall on the Outer Banks on 18 Sep as Category 2 hurricane
- Caused overwash, dune breaching, and infrastructure destruction
- NC-12 closed at identified hotspots
- Major breaching occurred northeast of Hatteras Inlet

Exploring Morphodynamics during Isabel (2003) Pre- and Post-Storm LiDAR Data

Available LiDAR data:

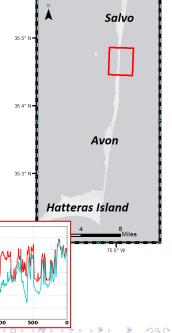
- Pre- and post-storm data sets available from the NASA / USGS Experimental Advanced Airborne Research LiDAR
 - 16 Sep 2003
 - 21 Sep 2003
- Coverage of Outer Banks from Ocracoke Inlet to Oregon Inlet
- Surveyed width of 250-300 m
- Resolution of 2 m
- Only the topographic data are used, due to water turbidity in bathymetric regions

Exploring Morphodynamics during Isabel (2003) Storm Impacts in Study Area

Alongshore crest elevation change:

- Study area between Avon and Salvo
 - Distance of about 4.3 km
- Elevation changes at pre-storm crest line
 - Average = 1.5 m
 - Maximum = 5.6 m
- Total of 8 major dune erosion events
 - All wider than 15 m

4000


3500

3000

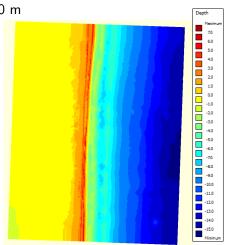
2500

2000

1500

Initial Results with XBeach Generating Mesh for XBeach Simulations

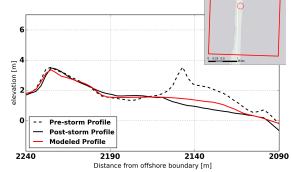
Combining data sets:


- Pre-storm LiDAR with 1 m resolution
- NC flood mapping DEM with 10 m resolution

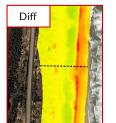
Converting to computational mesh:

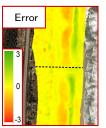
- Total of 990 \times 440 cells
- Cell widths:
 - Alongshore = 15 m
 - Cross-shore
 - At offshore boundary = 30 m
 - At shoreline = 3 m

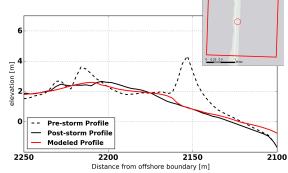
Need to assign values:

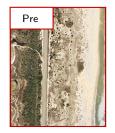

- Waves and water levels
- Sediment properties

Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events

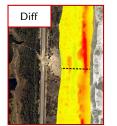

Dune Erosion Event #1:

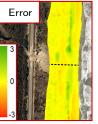

- First dune removal modeled perfectly
- No changes to profile behind first dune

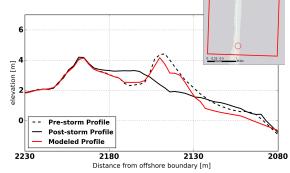




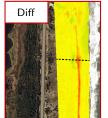
Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events

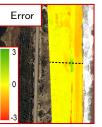

Dune Erosion Event #2:

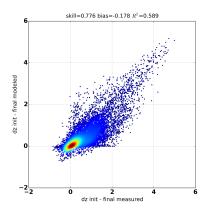

- 1. Removal of first and second dunes
- The erosion and overwash modeled correctly



Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events


Dune Erosion Event #3:


- Inaccurate model result
- Too much erosion on the beach
- First dune is not removed



Initial Results with XBeach Model Accuracy

Skill Score:

- Compares measured to modeled elevation change
- Skill score greater than 0.5 is "Excellent"
- Modeled profiles match observations: scatter points close to 1:1

Introduction

About Me Hurricane Season 2005

Predictive Modeling of Coastal Flooding

Wide Range of Spatial Scales Models for Hurricane Waves and Storm Surge Engineering Applications

Analyses of Hurricane Matthew (2016)

Real-Time Forecasting Best-Possible Hindcast

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Summary and Future Work Predictive Models for Waves, Flooding, and Beach Morphodynamics

Real-time forecasting for coastal North Carolina:

- Available several times per day at: nc-cera.renci.org
- Hurricane Matthew (2016)
 - 47 advisories were issued during the storm
 - Measurements were collected all along the U.S. East Coast
 - Hindcasts on meshes with difference coverage, resolution
 - Prediction errors decrease for higher resolution meshes

Working with XBeach to simulate beach and dune erosion:

- Preliminary results are encouraging
 - Developing model for large domain: 18 km of Hatteras Island
 - Improving accuracy for more complex erosion patterns and breaching
- Need to couple with ADCIRC
 - Revised topography to improve flood predictions