Predictive Modeling for Storm Surge and Flooding Risks in North Carolina

JC Dietrich¹, A Thomas¹, A Gharagozlou¹, N Tull¹, MF Overton¹, RA Luettich², JG Fleming³, BO Blanton⁴, C Kaiser⁵

¹Dep't of Civil, Construction, and Environmental Engineering, NC State University
²Institute of Marine Sciences, University of North Carolina at Chapel Hill
³Seahorse Coastal Consulting, Morehead City, NC
⁴Renaissance Computing Institute, Chapel Hill, NC
⁵Center for Computation & Technology, Louisiana State University

NWS Mid-Atlantic and Southeast Subregional Workshop Raleigh NC, 28 April 2017

イロト 不得 トイヨト イヨト

Analyses of Hurricane Matthew (2016) Models for Hurricane Waves and Storm Surge Real-Time Forecasting Best-Possible Hindcast

Mapping and Visualization for Decision Support

Connecting with Emergency Managers Downscaling and Extrapolation

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Models for Hurricane Waves and Storm Surge Example of Coastal Flooding

Winds and Storm Surge during Arthur (2014)

・ロト ・ 一下・ ・ ヨト ・

-

36°

35°

Models for Hurricane Waves and Storm Surge Tight Coupling of SWAN+ADCIRC

JC Dietrich, et al. (2011). Modeling Hurricane Waves and Storm Surge using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58, 45-65, DOI:10.1016/j.coastaleng.2010.08.001.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Real-Time Forecasting ADCIRC Surge Guidance System (ASGS)

SWAN+ADCIRC can be employed in real-time via the ASGS

- Everything happens automatically

 $-\,$ Models are initialized, run and processed by Perl scripts

Wind fields from two sources:

- 1. Under normal conditions:
 - Downloaded from NAM model output by NOAA/NCEP
 - Converted into format compatible with SWAN+ADCIRC
- 2. Under hurricane conditions:
 - Download advisories from NOAA/NHC
 - Generate wind field using parametric model (Holland, 1980)

Guidance can be shared in multiple formats:

- Send directly to stakeholders (NC Emergency Management)
- Share publicly via web service (www.adcirc.org)

Real-Time Forecasting during Hurricane Hermine Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org

Real-Time Forecasting during Hurricane Hermine Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org

Real-Time Forecasting during Hurricane Matthew Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org

Real-Time Forecasting during Hurricane Matthew Coastal Emergency Risks Assessment (CERA): nc-cera.renci.org

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のくぐ

Real-Time Forecasting during Hurricane Matthew

High-Resolution Meshes

Best-Possible Hindcast of Hurricane Matthew Evolution of Winds Along US East Coast – HSOFS

996

Best-Possible Hindcast of Hurricane Matthew Evolution of Water Levels Along the US East Coast – HSOFS

- ∃▶ ▲ ∃▶ = = ∽ ۹ () ()

Best-Possible Hindcast of Hurricane Matthew Water Level Comparison from South to North

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Best-Possible Hindcast of Hurricane Matthew Quantifying the Effect of Mesh Resolution

How does mesh resolution affect the model performance?

- Comparison to wind speeds:

Mesh	Stations	RMSE (m/s)
HSOFS	108	1.944
HSOFS	33	2.260
NC9	33	2.367

- Comparison to water levels:

Mesh	Stations	RMSE (m)
HSOFS	310	0.295
HSOFS	90	0.264
NC9	90	0.240

Water level predictions are improving when we have better resolution

- How can we improve for future years?

Analyses of Hurricane Matthew (2016)

Models for Hurricane Waves and Storm Surge Real-Time Forecasting Best-Possible Hindcast

Mapping and Visualization for Decision Support Connecting with Emergency Managers Downscaling and Extrapolation

Considering Erosion of Beaches and Dunes Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Connecting with Emergency Managers Flood Inundation Mapping and Alert Network (FIMAN): fiman.nc.gov

Connecting with Emergency Managers Flood Inundation Mapping and Alert Network (FIMAN): fiman.nc.gov

Connecting with Emergency Managers Flood Inundation Mapping and Alert Network (FIMAN): fiman.nc.gov

Downscaling and Extrapolation LiDAR DEM of Carteret County

Extrapolate water surface elevation predicted by ADCIRC to match topography of a higher-resolution Digital Elevation Model (DEM)

- Interpolate ADCIRC points to raster at resolution of DEM (50 ft)
- Using GRASS GIS, "expand" raster outward only where the ADCIRC cell value is greater than the DEM cell value
- Remove isolated (not hydraulically-connected) ADCIRC cells generated by this process
- Convert new, expanded raster to polygon format

Downscaling and Extrapolation Initial Results – Carteret County

Analyses of Hurricane Matthew (2016)

Models for Hurricane Waves and Storm Surge Real-Time Forecasting Best-Possible Hindcast

Mapping and Visualization for Decision Support

Connecting with Emergency Managers Downscaling and Extrapolation

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Considering Erosion of Beaches and Dunes eXtreme Beach (XBeach): xbeach.org

Our forecast system is limited:

- Bathymetry and topography are fixed / constant
- No consideration of beach erosion, dune breaching, etc.
- Flooding impacts are limited behind the dunes

With support from NC Sea Grant, we are coupling with XBeach:

- Open-source model developed in the Netherlands
- Capable of simulating hydrodynamic and morphodynamic processes
- Applied typically at beach scales (a few kilometers)

Initial Results with XBeach XBeach Profiles at Major Dune Erosion Events Dune Erosion Event #2:

- Removal of first and second dunes
- The erosion and overwash modeled correctly

Initial Results with XBeach Model Accuracy

Skill Score:

- Compares measured to modeled elevation change
- Skill score greater than 0.5 is "Excellent"
- Modeled profiles match observations: scatter points close to $1{:}1$

Analyses of Hurricane Matthew (2016)

Models for Hurricane Waves and Storm Surge Real-Time Forecasting Best-Possible Hindcast

Mapping and Visualization for Decision Support

Connecting with Emergency Managers Downscaling and Extrapolation

Considering Erosion of Beaches and Dunes

Exploring Morphodynamics during Isabel (2003) Initial Results with XBeach

Summary and Future Work

Summary and Future Work

Predictive Models for Waves, Flooding, and Beach Morphodynamics

Real-time forecasting for coastal North Carolina:

- Available at: www.adcirc.org
- Hurricane Matthew (2016)
 - 47 advisories were issued during the storm
 - Flooding impacts along the U.S. East Coast
 - Hindcasts on meshes with difference coverage, resolution
 - Water level predictions within 1 ft
- Working with NCEM to integrate forecasts into FIMAN

Working with XBeach to simulate beach and dune erosion:

- Preliminary results are encouraging
 - Developing model for Hatteras Island
 - Improving accuracy for complex erosion patterns
- $-\,$ Need to couple with wave and surge models
 - Revised topography to improve flood predictions

